Formule

Elektrina in električni tok

$i=\frac{\Delta Q}{\Delta t}$
$J=\frac{I}{A}$
$e_{0}=1,6 \cdot 10^{-19}$

Magnetno polje

$\mu_{0}=4 \pi \cdot 10^{-7}$
$H=\frac{\Theta}{l}$
$\Theta=I \cdot N$
$F_{\mathrm{m}}=B \cdot I \cdot l$
$B=\mu_{\mathrm{r}} \cdot \mu_{0} \cdot H$
$\Phi=B \cdot A$

Elektromagnetna indukcija

$U_{\mathrm{i}}=B \cdot v \cdot l=-N \frac{\Delta \Phi}{\Delta t}=-L \frac{\Delta i}{\Delta t}$
$L=\mu_{\mathrm{r}} \cdot \mu_{0} \cdot \frac{N^{2} \cdot A}{l}$

Električno polje

$\varepsilon_{0}=8,85 \cdot 10^{-12}$
$C=\frac{Q}{U}$
$W_{\mathrm{e}}=\frac{Q \cdot U}{2}=\frac{C \cdot U^{2}}{2}=\frac{Q^{2}}{2 \cdot C}$
$E=\frac{U}{d}$
$F=Q \cdot E$
$C=\varepsilon_{\mathrm{r}} \cdot \varepsilon_{0} \cdot \frac{A}{d}$
$D=\varepsilon_{\mathrm{r}} \cdot \varepsilon_{0} \cdot E$

Enosmerna vezja

$R=\frac{U}{I}$
$R=\rho \cdot \frac{l}{A}$
$R=R_{20} \cdot(1+\alpha \cdot \Delta T)$
$P=U \cdot I=\frac{U^{2}}{R}=I^{2} \cdot R$
$W_{\mathrm{e}}=P \cdot t=U \cdot I \cdot t$
$\eta=\frac{P_{\mathrm{izh}}}{P_{\mathrm{vh}}}=\frac{W_{\mathrm{izh}}}{W_{\mathrm{vh}}}$

Enostavni izmenični tokokrog

$\varphi=\alpha_{\mathrm{u}}-\alpha_{\mathrm{i}}$
$\omega=2 \pi \cdot f$
$u=U_{\mathrm{m}} \cdot \sin \left(\omega \cdot t \pm \alpha_{\mathrm{u}}\right)$
$U=\frac{U_{\mathrm{m}}}{\sqrt{2}}$
$P=U_{\mathrm{R}} \cdot I_{\mathrm{R}}=\frac{U_{\mathrm{R}}{ }^{2}}{R}=I_{\mathrm{R}}{ }^{2} \cdot R$
$Q_{\mathrm{L}}=U_{\mathrm{L}} \cdot I_{\mathrm{L}}$
$Q_{\mathrm{C}}=U_{\mathrm{C}} \cdot I_{\mathrm{C}}$
$X_{\mathrm{C}}=\frac{1}{\omega \cdot C}$
$X_{\mathrm{L}}=\omega \cdot L$

Sestavljeni izmenični tokokrog

$P=S \cdot \cos \varphi$
$Q=S \cdot \sin \varphi$
$S=U \cdot I=\sqrt{P^{2}+\left(Q_{\mathrm{L}}-Q_{\mathrm{C}}\right)^{2}}$
$R=Z \cdot \cos \varphi$
$X=Z \cdot \sin \varphi$
Realna tuljava
$X_{\mathrm{L}}=\omega \cdot L=2 \pi \cdot f \cdot L$
$\operatorname{tg} \varphi=\frac{X_{\mathrm{L}}}{R}=\frac{1}{\operatorname{tg} \delta}=Q$

Zaporedna vezava
$Z=\sqrt{R^{2}+\left(X_{\mathrm{L}}-X_{\mathrm{C}}\right)^{2}}$
$\operatorname{tg} \varphi=\frac{X_{\mathrm{L}}-X_{\mathrm{C}}}{R}=\frac{U_{\mathrm{L}}-U_{\mathrm{C}}}{U_{\mathrm{R}}}$

Vzporedna vezava
$Y=\sqrt{G^{2}+\left(B_{\mathrm{C}}-B_{\mathrm{L}}\right)^{2}}$
$\operatorname{tg} \varphi=-\frac{B_{\mathrm{C}}-B_{\mathrm{L}}}{G}=-\frac{I_{\mathrm{C}}-I_{\mathrm{L}}}{I_{\mathrm{R}}}$

Resonanca
$f_{0}=\frac{1}{2 \pi \sqrt{L \cdot C}}$
Realni kondenzator
$X_{\mathrm{C}}=\frac{1}{\omega \cdot C}=\frac{1}{2 \pi \cdot f \cdot C}$
$\operatorname{tg} \varphi=\frac{R}{X_{\mathrm{C}}}=\frac{1}{\operatorname{tg} \delta}=Q$
$B=\frac{f_{0}}{Q}$

Transformator
$\frac{U_{1}}{U_{2}}=\frac{I_{2}}{I_{1}}=\frac{N_{1}}{N_{2}}$

Prehodni pojavi

$\tau=R \cdot C=\frac{L}{R}$
$t_{\mathrm{pp}}=5 \tau$
$u_{\mathrm{c}}=U \cdot\left(1-e^{-t / \tau}\right)$
$u_{\mathrm{c}}=U \cdot e^{-t / \tau}$
$i_{\mathrm{L}}=\frac{U}{R} \cdot\left(1-e^{-t / \tau}\right)$
$\dot{L}_{\mathrm{L}}=I \cdot e^{-t / \tau}=\frac{U}{R} \cdot e^{-t / \tau}$

Digitalna tehnika

$$
\begin{aligned}
& X+1=1 \\
& X+X=X \\
& X \cdot X=X \\
& \overline{\bar{X}}=X \\
& X \cdot 0=0 \\
& X+X Y=X \\
& X \cdot(X+Y)=X \\
& (X+\bar{Y}) \cdot Y=X Y \\
& X \cdot \bar{Y}+Y=X+Y \\
& (X+Y)+\bar{X}=1 \\
& (\bar{X}+\bar{Y}) \cdot X=0 \\
& \overline{X+Y}=\bar{X} \cdot \bar{Y} \\
& \overline{X \cdot Y}=\bar{X}+\bar{Y} \\
& X_{\text {LSB }}=\frac{x_{\text {max }}-x_{\text {min }}}{2^{\text {n }}} \\
& x_{\text {digit }}=\frac{U_{\text {analog }}}{U_{\text {LSB }}}
\end{aligned}
$$

Elektronska vezja

Usmernik
$U_{\mathrm{sr}}=\frac{U_{\mathrm{m}}}{\pi} \rightarrow U_{\mathrm{sr}}=U_{\mathrm{m}}-\frac{I_{\mathrm{sr}}}{2 f \cdot C}$
$U_{\mathrm{sr}}=\frac{2 U_{\mathrm{m}}}{\pi} \rightarrow U_{\mathrm{sr}}=U_{\mathrm{m}}-\frac{I_{\mathrm{sr}}}{4 f \cdot C}$
Tranzistor
$I_{\mathrm{C}}=-\alpha \cdot I_{\mathrm{E}}=\beta \cdot I_{\mathrm{B}}$
$\beta=\frac{\alpha}{1-\alpha}$
$I_{\mathrm{E}}+I_{\mathrm{B}}+I_{\mathrm{C}}=0$
Operacijski ojačevalnik
invertirajoči
$A=-\frac{R_{\mathrm{p}}}{R_{\mathrm{v}}}$
R_{p} - upor v povratni zanki
R_{v} - upor na invertirajočem vhodu
neinvertirajoči
$A=1+\frac{R_{\mathrm{p}}}{R_{\mathrm{v}}}$

Presek vodnikov in moč bremen

$$
\begin{aligned}
& A=\frac{200 \cdot l \cdot I}{\lambda \cdot \Delta u \% \cdot U_{\mathrm{f}}}=\frac{200 \cdot l \cdot P}{\lambda \cdot \Delta u \% \cdot U_{\mathrm{f}}^{2}} \\
& A=\frac{200 \cdot l \cdot I \cdot \cos \varphi}{\lambda \cdot \Delta u \% \cdot U_{\mathrm{f}}}=\frac{200 \cdot l \cdot P}{\lambda \cdot \Delta u \% \cdot U_{\mathrm{f}}^{2}} \\
& A=\frac{100 \cdot l \cdot I \cdot \sqrt{3}}{\lambda \cdot \Delta u \% \cdot U}=\frac{100 \cdot l \cdot P}{\lambda \cdot \Delta u \% \cdot U^{2}}\left(\mathrm{~mm}^{2}\right) \\
& A=\frac{100 \cdot l \cdot I \cdot \cos \varphi \cdot \sqrt{3}}{\lambda \cdot \Delta u \% \cdot U}=\frac{100 \cdot l \cdot P}{\lambda \cdot \Delta u \% \cdot U^{2}} \\
& I_{\mathrm{ks}}^{2} \cdot t \leq\left(k_{\mathrm{cu}} \cdot A\right)^{2} \quad J=\frac{I}{A} \\
& A=\frac{200}{\lambda \cdot \Delta u \% \cdot U^{2}} \cdot \sum\left(P_{\mathrm{i}} \cdot l_{\mathrm{i}}\right) \\
& R=\frac{\rho \cdot l}{A} \\
& \Delta U=\frac{2 \cdot l \cdot I}{\lambda \cdot A}(\mathrm{~V})
\end{aligned}
$$

Elektromotorni pogon
$P=U \cdot I$
$P_{\text {el.mot }}=\sqrt{3} \cdot U \cdot I \cdot \cos \varphi$
$I_{Z Y}=\frac{1}{3} \cdot I_{Z \Delta}$
$M_{\mathrm{ZY}}=\frac{1}{3} \cdot M_{\mathrm{Z} \Delta}$
$U_{2}=\frac{N_{2}}{N_{1}} \cdot U_{1}$
$U_{\text {max }}=U_{\text {ef }} \cdot \sqrt{2}$
$Q=P \cdot \tan \varphi$
$S=\frac{P}{\cos \varphi}$
$M=\frac{P_{\text {meh }} \cdot 30}{\pi \cdot n}$
$n_{\mathrm{s}}=\frac{f \cdot 60}{p}$
$p=\frac{f \cdot 60}{n_{\mathrm{s}}}$
$s=\frac{n_{\mathrm{s}}-n}{n_{\mathrm{s}}} \cdot 100 \%$

Regulacije

$K_{\mathrm{p}}=\frac{y_{\mathrm{o}}}{x_{\mathrm{o}}}$
$P T_{1}$ - člen (odziv sistema)
$X_{\mathrm{izh}}=K_{\mathrm{p}} \cdot\left(1-e^{-\frac{t}{\tau}}\right) \cdot X_{\mathrm{vh}} \quad \begin{array}{ll}X_{\mathrm{vh}}-\text { vhodna veličina } & \mathrm{I}-\text { člen } \\ X_{\mathrm{izh}}-\text { izhodna veličina } & X_{\mathrm{izh}}(t)=K_{\mathrm{l}} \cdot f x_{\mathrm{vh}}(t) d t\end{array}$
K_{p} - ojačanje sistema Če je $x_{\mathrm{vh}}(t)$ konstantna vrednost,
τ - časovna konstanta sistema

D - člen
$X_{\mathrm{izh}}(t)=K_{\mathrm{D}} \cdot \frac{\Delta X_{\mathrm{vh}}(t)}{\Delta t}$

PID regulator

Setpoint (r) - referenčna vrednost
Error (e) - napaka (odstopanje)
Output (X) - regulirana veličina
K_{p} - ojačanje P regulatorja
K_{i} - integracijska konstanta $T_{\mathrm{i}}=1 / K_{\mathrm{i}}$
K_{d} - diferencirna konstanta
Y - izhod regulatorja (regulirana veličina)
$y(t)=K_{\mathrm{p}} e(t)+K_{\mathrm{i}} \int_{0}^{t} e(\tau) d \tau+K_{\mathrm{d}} \frac{d e(t)}{d t}$
$y=K_{\mathrm{p}} \cdot\left(e+\frac{1}{T_{\mathrm{N}}} \int_{e} d t+T_{\mathrm{V}} \cdot \frac{d e}{d t}\right) \quad \begin{aligned} & T_{\mathrm{N}}-\text { integralni čas } \\ & T_{\mathrm{V}}-\text { diferencirni čas }\end{aligned}$
Digitalni PID regulator (e je v času Δt konstanten)
$Y=K_{\mathrm{p}} \cdot e+K_{\mathrm{i}} \cdot \sum(e \cdot \Delta t)+K_{\mathrm{d}} \cdot(\Delta e / \Delta t)$
Δt - časovni interval izračuna

ZN - metoda nastavitve parametrov PID regulatorja

Vrsta nadzora	K_{p}	K_{i}	K_{d}
P	$0,50 K_{\mathrm{u}}$	-	-
PI	$0,45 K_{\mathrm{u}}$	$0,54 K_{\mathrm{u}} / T_{\mathrm{u}}$	-
PID	$0,60 K_{\mathrm{u}}$	$0,2 K_{\mathrm{u}} / T_{\mathrm{u}}$	$3 K_{\mathrm{u}} T_{\mathrm{u}} / 40$

$K_{\mathrm{u}}-$ kritično ojačanje
T_{u} - perioda nihanja

Ujemi strojnih delov

$Z_{\text {maks }}=A_{\mathrm{g}}-a_{\mathrm{d}}$
$Z_{\text {min }}=A_{\mathrm{d}}-a_{\mathrm{g}}$

Toleranca

$$
\begin{aligned}
& d_{\mathrm{g}}=d+a_{\mathrm{g}} \\
& d_{\mathrm{d}}=d+a_{\mathrm{d}} \\
& T=a_{\mathrm{g}}-a_{\mathrm{d}} \\
& D_{\mathrm{g}}=D+A_{\mathrm{g}} \\
& D_{\mathrm{d}}=D+A_{\mathrm{d}} \\
& T=A_{\mathrm{g}}-A_{\mathrm{d}}
\end{aligned}
$$

Preračun ležajev

$L_{\mathrm{h}}=\frac{10^{6}}{60 \cdot n} \cdot\left(\frac{C^{3}}{F^{3}}\right)$

Delo, moč, izkoristek

$\eta=\frac{P_{\mathrm{k}}}{P_{\mathrm{el}}}$
$P=m \cdot g \cdot v$
$P=\frac{m \cdot g \cdot h}{t}$
$v=\pi \cdot D \cdot n$
$P=T \cdot \sigma$
$T=F \cdot \frac{d}{2}$
$\varpi=\frac{\pi \cdot n}{30}$
$P=F \cdot v$
$P=\frac{A}{t}$
$A=F \cdot s$
$A=m \cdot g \cdot h$

Hitrost pri obdelavi
$v_{\mathrm{c}}=\pi \cdot d \cdot n$
$v_{\mathrm{f}}=f \cdot n$
$f=f_{\mathrm{z}} \cdot z$

Pnevmatika in hidravlika

$A=\frac{F}{p_{\mathrm{e}} \cdot \eta}$
$d=\sqrt{\frac{4 \cdot A}{\pi}}$
$Q_{\mathrm{v}}=A \cdot s \cdot n \cdot \frac{p_{\mathrm{e}}+p_{\text {okol }}}{p_{\text {okol }}}$
$P=\frac{p_{\mathrm{e}} \cdot Q_{\mathrm{v}}}{\eta}$
$P_{\text {mot }}=\frac{Q \cdot p}{600}$
$P_{\text {črp }}=P_{\text {vh }} \cdot \eta_{\text {mot }} \cdot \eta_{\text {črp }}$
$Q=V_{\mathrm{v}} \cdot n \cdot \eta_{\mathrm{v}}$
$Q=\frac{P_{\text {črp }}}{p_{\mathrm{e}}}$
$Q_{\mathrm{v}}=A \cdot v=\frac{\pi \cdot D^{2}}{4} \cdot v$
$\eta=\frac{P_{\text {izh }}}{P_{\mathrm{vh}}} \rightarrow P_{\text {črp }}=P_{\mathrm{vh}} \cdot \eta_{\text {mot }} \cdot \eta_{\text {črp }}$

Prečni zatič

(pesto in gred)

$\tau=\frac{F}{2 \cdot A} \leq \tau_{\text {dop }}$
$A=\frac{\pi \cdot d^{2}}{4}, \quad F=\frac{2 \cdot T}{D}$
$p_{\mathrm{n}}=\frac{6 \cdot T}{D^{2} \cdot d} \leq p_{\mathrm{dop}}$
$p_{\mathrm{z}}=\frac{4 \cdot T}{d \cdot\left(D_{\mathrm{z}}^{2}-D^{2}\right)} \leq p_{\mathrm{dop}}$
$\tau_{\mathrm{s}}=\frac{4 \cdot T}{D \cdot \pi \cdot d^{2}} \leq \tau_{\text {sdop }}$

Vzdolžni zatič

$p=\frac{F}{A_{\mathrm{p}}} \leq p_{\text {dop }}$
$A_{\mathrm{p}}=\frac{n \cdot l \cdot d}{2}$
n ... število zatičev, D ... premer gredi
$\tau_{\mathrm{s}}=\frac{F}{A_{\mathrm{s}}} \leq \tau_{\text {sdop }}$
$A_{\mathrm{s}}=n \cdot d \cdot l$
$F=\frac{2 \cdot T}{D}$

Robotika in kinematika
$d^{2}=a^{2}+b^{2}-2 a b \cdot \cos (\beta)$
$\cos (\beta)=\frac{a^{2}+b^{2}-x^{2}-y^{2}}{2 a b}$
$K 2=\arctan \left(\frac{y}{x}\right)$
$K 1=\arccos \left(\frac{a^{2}+x^{2}+y^{2}-b^{2}}{2 a \sqrt{x^{2}+y^{2}}}\right)$

Napetost velementu

$\sigma=\frac{F_{\mathrm{N}}}{A_{\mathrm{N}}}$
$p=\frac{F}{A}$
$\tau=\frac{F_{\mathrm{S}}}{A_{\mathrm{S}}}$

Vijačne zveze

Sile na navoju
$F_{\mathrm{t}}=F \cdot \tan (\gamma \pm \rho)$
$\tan \gamma=\frac{P}{\pi \cdot d_{2}}$
$\tan \rho=\frac{\mu}{\cos \frac{\alpha}{2}}$
$T=F_{\mathrm{t}} \cdot \frac{d_{2}}{2}$

Prednapeti vijak
$A=\frac{\sqrt{2} \cdot F}{\sigma_{\text {dop }}}$
$\sigma_{\mathrm{dop}}=\frac{R_{\mathrm{p} 0,2}}{v}$
$\sigma_{\mathrm{p}}=\sqrt{\sigma^{2}+3 \cdot\left(\alpha_{0} \cdot \tau\right)^{2}}$
$\sigma=\frac{F}{A}, \quad A=\frac{\pi \cdot d_{1}^{2}}{4}$
$\tau=\frac{T}{W_{\mathrm{t}}}, \quad W_{\mathrm{t}}=\frac{\pi \cdot d_{1}^{3}}{16}$
$p=\frac{F}{z \cdot A_{\mathrm{p}}} \leq p_{\mathrm{dop}}$
$A_{\mathrm{p}}=\frac{\pi}{4} \cdot\left(d^{2}-D_{1}^{2}\right)$
$H=z \cdot P$

Vijak brez prednapetja
$\sigma=\frac{F}{A} \leq \sigma_{\text {dop }}$
$A=\frac{\pi \cdot d_{1}^{2}}{4}$
$\sigma_{\mathrm{dop}}=\frac{R_{\mathrm{p} 0,2}}{v}$
$p=\frac{F}{z \cdot A_{\mathrm{p}}} \leq p_{\text {dop }}$
$A_{\mathrm{p}}=\frac{\pi}{4} \cdot\left(d^{2}-D_{1}^{2}\right)$
$H=z \cdot P$
Prečno obremenjen vijak
$\tau=\frac{F}{A} \leq \tau_{\text {dop }}$
$A=\frac{\pi \cdot D_{1}^{2}}{4}$
$\tau_{\mathrm{dop}}=\frac{R_{\mathrm{po}, 2}}{v}$
$p=\frac{F}{A_{\mathrm{d}}} \leq p_{\text {dop }}$
$A_{\mathrm{d}}=s \cdot D_{1}$
Privijanje vijaka
$W=F_{1} \cdot 2 \pi \cdot r$
$W=F_{2} \cdot P$

Zveze s sorniki

$\sigma=\frac{M_{\text {maks }}}{W_{\text {Z }}} \leq \sigma_{\text {dop }}$
$M_{\text {maks }}=\frac{F}{4} \cdot\left(a+\frac{b}{2}\right)$
$W_{\mathrm{z}}=\frac{\pi \cdot d^{3}}{32}$
$\tau=\frac{F}{2 \cdot A} \leq \tau_{\text {dop }}$
$A=\frac{\pi \cdot d^{2}}{4}$
$p_{\mathrm{d}}=\frac{F}{A_{\mathrm{d}}} \leq p_{\text {dop }}$
$A_{\mathrm{d}}=d \cdot b$
$p_{\mathrm{V}}=\frac{F}{A_{\mathrm{V}}} \leq p_{\text {dop }}$
$A_{\mathrm{V}}=2 \cdot d \cdot a$

Zveza z zagozdo

$p=\frac{2 \cdot T}{d \cdot l^{*} \cdot t_{2} \cdot i} \leq p_{\text {dop }}$

Zveza z mozniki

$p=\frac{k \cdot 2 \cdot T}{d \cdot l^{*} \cdot\left(h-t_{1}\right) \cdot i} \leq p_{\text {dop }}$
$k=1$, če je $i=1$
$k=1,35$, če je $i>1$

Osi in gredi
$d=\sqrt[3]{\frac{32 \cdot M_{\mathrm{maks}}}{\pi \cdot \sigma_{\mathrm{dop}}}}$
$d=\sqrt[3]{\frac{16 \cdot T}{\pi \cdot \tau_{\mathrm{dop}}}}$
$T=\frac{P}{\omega}=9,55 \cdot \frac{P}{n}$

Kovice

$\tau=\frac{F}{A_{1} \cdot m \cdot n} \leq \tau_{\text {sdop }}$
$A_{1}=\frac{\pi \cdot d_{1}^{2}}{4}$
$p=\frac{F}{d_{1} \cdot s \cdot n} \leq p_{\text {dop }}$

Temperaturno raztezanje

$\Delta l=l \cdot \alpha \cdot \Delta T$
$\Delta T=T_{2}-T_{1}$
$l_{1}=l \cdot(1+\alpha \cdot \Delta T)$
$\Delta V=V \cdot \beta \cdot \Delta T$
$V_{1}=V \cdot(1+\beta \cdot \Delta T)$
$\beta=3 \cdot \alpha$

Zobniki

$m=\frac{p}{\pi}$
$d_{0}=z \cdot m$
$d_{\mathrm{f}}=d_{0}-2,4 \mathrm{~m}$
$d_{\mathrm{k}}=d_{0}+2 \mathrm{~m}$

Gonila (jermenska, zobniška, verižna, sestavljena)
$a=\frac{d_{1}+d_{2}}{2}$
$i=\frac{n_{1}}{n_{2}}=\frac{d_{2}}{d_{1}}=\frac{z_{2}}{z_{1}}=\frac{M_{2}}{M_{1}}$
$M_{1}=\frac{30 \cdot P_{1}}{\pi \cdot n_{1}}$
$M_{2}=\frac{30 \cdot P_{2}}{\pi \cdot n_{2}}$
$\eta=\frac{P_{2}}{P_{1}}$
$P_{2}=\eta \cdot P_{1}$
$i_{\text {cel }}=i_{12} \cdot i_{34} \cdot \ldots$
$i_{\text {cel }}=\frac{n_{\text {vhod }}}{n_{\text {izhod }}}$

Elastične deformacije, Hookov zakon
$\sigma=E \cdot \varepsilon=\frac{F}{A}$
$\varepsilon=\frac{\Delta l}{l_{0}}$
$\Delta l=l-l_{0}$

