

Codice del candidato:

Državni izpitni center

PRIMA SESSIONE D'ESAME

Giovedì, 8 giugno 2006 / 105 minuti

Al candidato è consentito l'uso della penna stilografica o della penna a sfera, della matita HB o B, della gomma, del temperamatite, della calcolatrice tascabile, degli strumenti per la geometria. L'allegato con le costanti e le equazioni si trova sul foglio a parte, che il candidato deve estrarre dal fascicolo. Il candidato ha a disposizione due schede di valutazione.

MATURITÀ GENERALE

INDICAZIONI PER I CANDIDATI

Leggete attentamente le seguenti indicazioni. Non voltate pagina e non iniziate a risolvere i quesiti prima del via dell'insegnante preposto.

Incollate o scrivete il vostro numero di codice nello spazio apposito su questa pagina in alto a destra e sulle schede di valutazione

Scrivete le risposte nella prova d'esame usando la penna stilografica o a sfera. Le soluzioni degli esercizi della prova d'esame non vanno scritti a matita.

La prova d'esame comprende cinque quesiti equivalenti. Scegliete **quattro** quesiti e dopo averli risolti cerchiate nello schema riportato su questa pagina il numero dei quesiti da voi scelti. Se i quesiti scelti non verranno segnati il valutatore valuterà i primi quattro quesiti da voi risolti.

1	2	3	4	5

I quesiti che richiedono delle operazioni di calcolo devono riportare nella risposta tutto il procedimento attraverso il quale si giunge alla soluzione, con tutti i calcoli intermedi e le vostre deduzioni. Oltre ai calcoli sono possibili anche altri tipi di risposta (disegno, testo scritto, grafico ...).

Nei calcoli fate uso dei dati ricavati dal sistema periodico a pagina 2 della prova d'esame.

Abbiate fiducia in voi stessi e nelle vostre capacità.

Buon lavoro.

Questa prova d'esame ha 20 pagine, di cui 3 vuote.

SISTEMA PERIODICO DEGLI ELEMENTI

Z 6.00 Z 7.00 Z	20.2 Ne	9 10	40,0 Ar	Argo 48	83,8	<u>چ</u>	36	131	×eno Xeno	54	(222) Rn	Rado 86		
5	19,0 ⊤	Hinoro 9	35,5 C	Cloro 17	6,67	ي Bromo	32	127	– <u>oj</u>	53	(210) At	Astato 85		
>	16.0 O	Ussigeno 8	32,1 S	Zolfo 16	79,0	Selenio Selenio	34	128	Tellurio	52	(209) Po	Polonio 84		
>	4 Z	Azoto 7	31,0 P	Fosforo 15	74,9	AS	33	122	Antimonio	51	209 Bi	Bismuto 83		
≥	12.0 C	carbonio 6	28,1 Si	Silicio 14	72,6	Germanio	32	119	Stagno	20	207 Pb	Piombo 82		
≡	6. a	Boro 5	27,0 AI	Alluminio 13	2,69	© @	31	115	<u>로</u> 일	49	204 TI	Tallio 81		
					65,4	Zu⊗ Ziv⊗	30	112	Samic Cad Discontinuos	48	201 Hq	Mercurio 80		
					9,69	Same Same	53	108	Ag Argento	47	197 Au	oro 62		
					58.7	Z N	28	106	Palladio	46	195 Pt	Platino 78		
					6'85	ဝ န္ဓိ	27	103	₹	45	192 Ir	Iridio 77	(268) Mt	Meitnerio 109
					6,52	F erro	56	101	Rutenio	4	190 Os	0smio 76	(269) Hs	Hassio 108
	elativa	او ازدہ			54,9	Mn Manganese	52	(26)	LC Tecnezio	43	186 Re	Renio 75	(264) Bh	Bohrio 107
	massa atomica relativa simbolo	nome dell'elemento numero atomico			52,0	نة دور	24	6'56	Molibdeno	42	184 W	Wolframio 74	(266) Sg	Seaborgio 106
	massa	iou unu			6,05	∨ Vanadio	23	92,9	Ω Nopio Z	41	181 Ta	Tantalio 73	(262) Db	Dubnio 105
					47,9	Titanio	22	91,2	Zir onio	4	JH 621	Afnio 72	(261) Rf	Rutherfordio 104
					45,0	Scandio	21	6,88	≻ ∰	33	139 La	Lantanio 57	(227) Ac	Attinio 89
=	9,01 Be	Berillo 4	24,3 Mg	Magnesio 12	40,1	<u>မှု</u>	20	9,78	Stronzio	38	137 Ba	Bario 56	(226) Ra	Radio 88
1,01 T Idrogeno	6,94 Li	nto 3	23,0 Na	Sodio 11	39,1	Potassio	19	85,5	Rubidio	37	ევ ე	Cesio 55	(223) Fr	Francio 87

140	141	144	(145)	150	152	121	159	163	165	167	169	173	174,97
ပီ	ቯ	Ž	Fa	S	Д	ပ ိ	а Н	<u>ک</u>	운	ш	드	S	_
Cerio	Praseodimio	Neodimio	Promezio	Samario	Europio	Gadolinio	Terbio	Disprosio	Olmio	Erbio	OllnZ	Itterbio	Lutezio
28	59	9	61	62	63	64	65	99	29	89	69	20	71
232	(231)	238	(237)	(244)	(243)	(247)	(247)	(251)	(254)	(257)	(258)	(528)	(260)
드	Ра	>	2 Z	<u>_</u>	Am	S	ద	ర	В	표	ნ Z	ž	ڐ
Torio	Protoattinio	Uranio	Nettunio	Plutonio	Americio	Curio	Berchelio	Californio	Einsteinio	Fermio	Mendelevio	Nobelio	Laurenzio
90	91	92	93	94	92	96	97	98	66	100	101	102	103

Lantanidi

Attinidi

COSTANTI ED EQUAZIONI

 $q = 9.81 \text{ m s}^{-2}$ accelerazione di gravità

 $c = 3.00 \cdot 10^8 \text{ m s}^{-1}$ velocità della luce

 $e_0 = 1,60 \cdot 10^{-19} \text{ A s}$ carica elementare

 $N_{_{\Lambda}} = 6,02 \cdot 10^{26} \text{ kmol}^{-1}$ numero di Avogadro

 $R = 8.31 \cdot 10^3 \text{ J kmol}^{-1} \text{K}^{-1}$ costante universale dei gas

 $G = 6.67 \cdot 10^{-11} \text{ N m}^2 \text{kg}^{-2}$ costante gravitazionale

 $\varepsilon_0 = 8,85 \cdot 10^{-12} \rm A \; s \; V^{-1} m^{-1}$ costante dielettrica del vuoto

 $\mu_0 = 4\pi \cdot 10^{-7} \ \mathrm{V \ s \ A^{-1} m^{-1}}$ permeabilità magnetica del vuoto

 $k = 1,38 \cdot 10^{-23} \text{ J K}^{-1}$ costante di Boltzmann

 $h = 6,63 \cdot 10^{-34} \text{ J s} = 4,14 \cdot 10^{-15} \text{ eV s}$ costante di Planck

 $\sigma = 5.67 \cdot 10^{-8} \text{ W m}^{-2} \text{K}^{-4}$ costante di Stefan

 $1u = 1,66 \cdot 10^{-27} \text{kg; per } m = 1u \text{ è } mc^2 = 931,5 \text{ MeV}$ unità di massa atomica

МОТО s = vt $s = \bar{v}t$ $s = v_0 t + \frac{at^2}{2}$ $v = v_0 + at$ $v^2 = v_0^2 + 2as$ $\omega = 2\pi\nu = 2\pi \frac{1}{t}$ $v = \omega r$

 $s = s_0 \operatorname{sen} \omega t$ $v = \omega s_0 \cos \omega t$

 $F = \rho q V$ $\vec{F} = m\vec{a}$ $\vec{G} = m\vec{v}$ $a_r = \omega^2 r$ $\vec{F}\Delta t = \Delta \vec{G}$ $\vec{M} = \vec{r} \times \vec{F}$ $a = -\omega^2 s_0 \operatorname{sen} \omega t$ $p = \rho qh$ $\Gamma = J\omega$ $M \triangle t = \triangle \Gamma$

FORZA **ENERGIA**

 $F = G \frac{m_1 m_2}{r^2}$ $A = \vec{F} \cdot \vec{s}$ $W_{\rm c} = \frac{m v^2}{2}$ $\frac{t_0^2}{r^3} = \cos t.$

 $W_{\rm p} = mgh$ F = ks

F = pS $W_{\rm el} = \frac{ks^2}{2}$ $F = k_{\star} F_{n}$

 $P = \frac{A}{4}$

 $A = \Delta W_c + \Delta W_p + \Delta W_{el}$ $A = p\Delta V$

 $p + \frac{\rho v^2}{2} + \rho gh = \cos t.$

ELETTRICITÀ

$$\begin{split} I &= \frac{e}{t} \\ F &= \frac{e_1 e_2}{4 \pi \varepsilon_0 r^2} \\ \overrightarrow{F} &= e \overrightarrow{E} \\ U &= \overrightarrow{E} \cdot \overrightarrow{s} = \frac{A_e}{e} \\ U &= \overrightarrow{E} \cdot \overrightarrow{s} = \frac{A_e}{e} \\ U &= \frac{e}{S} \\ U &= \frac{e}{S}$$

MAGNETISMO

$$\overrightarrow{F} = I\overrightarrow{l} \times \overrightarrow{B}$$

$$F = IlB \operatorname{sen} \alpha$$

$$\overrightarrow{F} = e\overrightarrow{v} \times \overrightarrow{B}$$

$$B = \frac{\mu_0 I}{2\pi r}$$

$$B = \frac{\mu_0 NI}{l}$$

$$M = NISB \operatorname{sen} \alpha$$

$$\Phi = \overrightarrow{B} \cdot \overrightarrow{S} = BS \cos \alpha$$

$$U_i = lvB$$

$$U_i = \omega SB \operatorname{sen} \omega t$$

$$U_i = \frac{\Delta \Phi}{\Delta t}$$

$$L = \frac{\Phi}{I}$$

$$L = \frac{\mu_0 N^2 S}{l}$$

$$W_m = \frac{LI^2}{2}$$

$$w_m = \frac{B^2}{2\mu_0}$$

OSCILLAZIONI ED ONDE

$$\begin{split} t_0 &= 2\pi \sqrt{\frac{m}{k}} \\ t_0 &= 2\pi \sqrt{\frac{l}{g}} \\ t_0 &= 2\pi \sqrt{LC} \\ c &= \lambda \nu \\ &= \alpha = \frac{N\lambda}{d} \\ j &= \frac{P}{S} \\ E_0 &= cB_0 \\ j &= wc \\ j &= \frac{1}{2} \varepsilon_0 E_0^2 c \\ j' &= j \cos \alpha \\ \nu &= \nu_0 (1 \pm \frac{v}{c}) \\ \nu &= \frac{\nu_0}{1 \mp \frac{v}{c}} \end{split}$$

CALORE

$$n = \frac{m}{M}$$

$$pV = nRT$$

$$\Delta l = \alpha l \Delta T$$

$$\Delta V = \beta V \Delta T$$

$$A + Q = \Delta W$$

$$Q = cm \Delta T$$

$$Q = qm$$

$$W_0 = \frac{3}{2}kT$$

$$P = \lambda S \frac{\Delta T}{\Delta l}$$

$$j = \sigma T^4$$

OTTICA

$$\begin{split} n &= \frac{c_0}{c} \\ \frac{\sec \alpha}{\sec \beta} &= \frac{c_1}{c_2} = \frac{n_2}{n_1} \\ \frac{1}{f} &= \frac{1}{a} + \frac{1}{b} \end{split}$$

FISICA MODERNA

 $W_{\scriptscriptstyle \mathrm{f}} = h \nu$

$$\begin{split} W_{\mathrm{f}} &= L_{estr} + W_{\mathrm{k}} \\ W_{\mathrm{f}} &= \Delta \, W_{\mathrm{n}} \\ \lambda_{\mathrm{min}} &= \frac{h \, c}{e \, U} \\ \Delta \, W &= \Delta \, m \, c^2 \\ N &= N_0 \, 2^{-\frac{t}{t_{\mathrm{l/2}}}} = N_0 \, e^{-\lambda \, t} \\ \lambda &= N \, \frac{\ln 2}{t_{\mathrm{l/2}}} \\ A &= N \lambda \end{split}$$

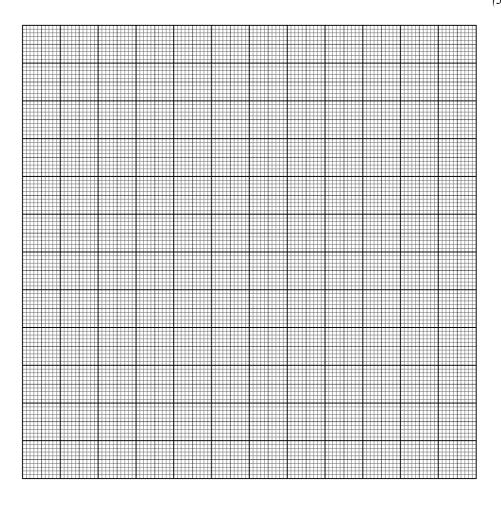
VOLTATE PAGINA

1° PROBLEMA

Di solito scriviamo l'equazione di stato dei gas nella forma $p\,V=\frac{m}{M}\,R\,T$. Se consideriamo che $\rho=\frac{m}{V}$, nell'equazione di stato dei gas possiamo quindi sostituire il quoziente tra massa e volume con la densità.

1. Scrivete l'equazione di stato dei gas dove una delle variabili sia la densità.

(1 punto)


Comprimiamo l'aria in una bombola in modo che la pressione in essa sia di alcuni bar. Lasciamo quindi uscire lentamente dalla bombola il gas misurando la sua massa a pressioni diverse. Il volume dell'aria nella bombola è di $2230~{\rm cm}^3$ e la temperatura si mantiene tutto il tempo a $23~{\rm ^{\circ}C}$. Nella tabella sono riportati i valori della massa dell'aria nella bombola a pressioni diverse.

	p [bar]	m [g]	$\rho \left[\mathrm{kg} \mathrm{m}^{-3} \right]$
1	4,85	12,8	
2	4,26	11,2	
3	3,72	9,5	
4	3,06	8,1	
5	2,50	6,5	
6	1,45	3,8	

2. Completate la tabella calcolando i valori della densità dell'aria.

3. Tracciate il grafico che esprima la dipendenza della densità dell'aria dalla pressione. Ad ogni coppia di dati della tabella corrisponda un punto nel sistema coordinato, quindi tracciate la retta che interpola maggiormente i punti ottenuti e che passa per l'origine del sistema coordinato.

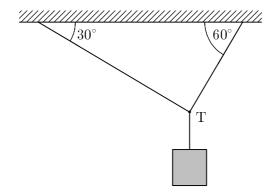
(3 punti)

4. Indicate due punti sulla retta, leggete le loro coordinate e con esse calcolate il coefficiente angolare della retta. Non dimenticate di scrivere l'unità di misura del coefficiente angolare.

(2 punti)

5. Esprimete la massa di un kilomol di aria con il coefficiente angolare e calcolatela.

(2 punti)


6. Quant'è l'errore relativo della massa del kilomol così calcolata se l'errore assoluto della temperatura misurata è di 3 gradi?

2° PROBLEMA

1. Scrivete con l'equazione o descrivete a parole la prima legge di Newton.

(1 punto)

Le due estremità di due fili di rame sono fissate al soffitto. Facciamo un nodo con una cordicella e le due estremità libere dei due fili (punto T). Sulla cordicella agganciamo un peso di massa $900~\rm g$ come mostra la figura. Il filo di sinistra racchiude con il soffitto un angolo di 30° , il filo di destra invece un angolo di 60° .

2. Disegnate tutte le forze che agiscono sul nodo nel punto T.

(1 punto)

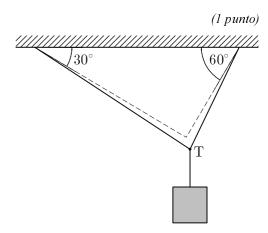
3. Quali forze tendono i due fili? Trascuriamo il peso dei fili.

(2 punti)

Il filo a sinistra del punto T ha una lunghezza di 127~cm, il filo a destra invece 73~cm. La sezione di ogni filo è di $2,0~mm^2$. Riscaldiamo con la corrente elettrica i due fili di 150~K. Il calore specifico del rame è $390~J~kg^{-1}~K^{-1}$. Il coefficiente di dilatazione lineare del rame è $\alpha=1,67\cdot10^{-5}~K^{-1}$. La densità del rame è $8,9~kg~dm^{-3}$.

4. Quant'è la massa totale dei due fili?

(1 punto)

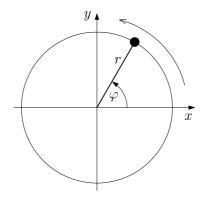

5. Quanto lavoro elettrico minimo hanno acquistato i due fili durante il riscaldamento?

(2 punti)

6. Di quanto si allunga ogni filo durante il riscaldamento?

(2 punti)

7. La forza nel filo che racchiude un angolo di 30° con il soffitto dopo il riscaldamento aumenta o diminuisce? Motivate la vostra risposta. Nella spiegazione potete avvalervi della figura sottostante. L'allungamento dei fili nella figura è esagerato. I segmenti tratteggiati stanno ad indicare lo stato prima del riscaldamento.



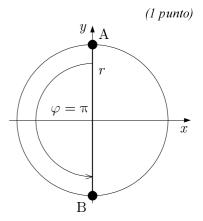
3° PROBLEMA

1. Scrivete la dipendenza del periodo dalla frequenza di un moto circolare uniforme.

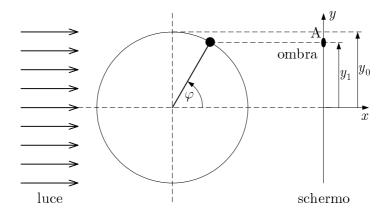
(1 punto)

Un corpo di $0,35~{\rm kg}$ ruota uniformemente nel piano orizzontale $\it xy$ come mostra la figura. Il raggio della circonferenza è di $\it 20~{\rm cm}$, il periodo è di $\it 0,45~{\rm s}$.

2. Disegnate nella figura il vettore della velocità periferica e il vettore dell'accelerazione sul corpo che ruota indicandoli con i simboli \vec{v} e \vec{a} .


(2 punti)

3. Calcolate la velocità periferica e l'accelerazione del corpo che ruota.


(2 punti)

4. Calcolate l'energia cinetica del corpo che ruota.

5. Quant'è l'impulso che il corpo riceve spostandosi dal punto A al punto B?

Illuminiamo da sinistra il corpo e osserviamo la sua ombra oscillante sullo schermo. Cominciamo a misurare il tempo quando il corpo interseca l'asse $\,x\,$ spostandosi verso l'alto.

6. Nell'istante t=0 l'ombra è nell'origine (y=0). Dopo 0,075 s l'ombra è nel punto A. Quant'è la distanza y_1 , cioè la distanza dall'origine al punto A?

(1 punto)

7. Quant'è l'accelerazione dell'ombra nel punto A?

(1 punto)

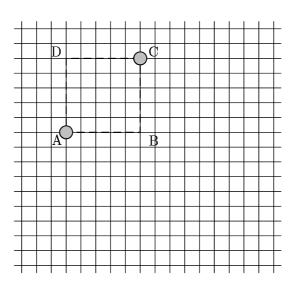
8. Quanto tempo dopo esser passata per il punto A <u>l'ombra</u> ritorna per la prima volta nello stesso punto?

4° PROBLEMA

In uno spazio vuoto si trova una piccola pallina elettrizzata negativamente.

1. Disegnate le linee di campo attorno alla pallina.

(1 punto)



2. Calcolate l'intensità del campo elettrico alla distanza di $5,0~{\rm cm}$ da una piccolissima pallina che è elettrizzata con una quantità di carica $1,0\cdot 10^{-8}\,{\rm A\,s}$.

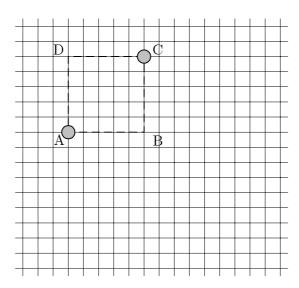
(1 punto)

Un quadrato ha il lato di $5,0~{\rm cm}$. Nel vertice A si trova una piccola pallina elettrizzata positivamente con una quantità di carica $1,0\cdot10^{-8}\,{\rm A\,s}$, nel vertice C si trova una pallina uguale di carica $9,0\cdot10^{-8}\,{\rm A\,s}$.

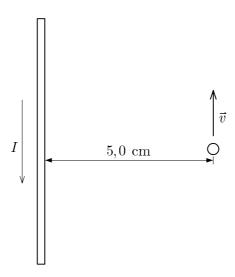
3. Disegnate nella figura il vettore che indica correttamente la direzione del campo elettrico nel vertice B.

4. Calcolate l'intesità del campo elettrico nel vertice B.

(2 punti)


Spostiamo la pallina dal vertice A fino alla pallina nel vertice C in modo che si tocchino e successivamente la riportiamo indietro nel vertice A.

5. Che carica hanno rispettivamente le due palline dopo essersi toccate?


(1 punto)

6. L'intensità del campo elettrico nel vertice B è maggiore, minore o uguale a quella di prima? <u>Confortate la vostra risposta</u> corredandola del relativo calcolo o graficamente.

(2 punti)

Portiamo la pallina di carica $1,0\cdot 10^{-8}\,\mathrm{A\,s}$ vicino ad un conduttore lungo e diritto attraversato da una corrente elettrica. Alla distanza di $5,0\,\mathrm{cm}$ dal conduttore la densità del campo magnetico è di $2,5\cdot 10^{-2}\,\mathrm{T}$. Muoviamo la pallina lungo il conduttore alla velocità costante di $1,5\,\mathrm{m\,s}^{-1}$ come mostra la figura.

7. Quant'è la forza magnetica che agisce sulla pallina? Disegnate nella figura la direzione della forza che agisce sulla pallina.

(2 punti)

VOLTATE PAGINA

16	M061-411-1-2

5° PROBLEMA

1. Quanti protoni e quanti neutroni ci sono nel nucleo dell' uranio ${}^{235}_{92}\mathrm{U}$?

(1 punto)

In una delle possibili reazioni di scissione del nucleo $^{235}_{92}\mathrm{U}$ si ottengono il nucleo di tecnezio $^{99}\mathrm{Tc}\,$ e il nucleo dell'indio $^{134}\mathrm{In}$.

2. Scrivete la reazione di scissione del nucleo di uranio $^{235}_{92}$ U nei suddetti isotopi di tecnezio ed indio. Considerate che durante la reazione si liberano anche alcuni neutroni.

(2 punti)

$$n + {}^{235}_{92}U \rightarrow$$

Durante ogni reazione di scissione del nucleo $^{235}_{92} U$ si liberano in media 200~MeV di energia. Una termocentrale nucleare funziona con una potenza di 500~MW. Supponiamo che tutti i nuclei di $^{235}_{92} U$ si scindino in tecnezio e indio. La massa di un kilomol di tecnezio è di 99~kg.

3. Quante reazioni di scissione avvengono nel reattore di una termocentrale in 1 secondo?

(2 punti)

4. Quanti grammi di tecnezio si formano nel reattore in 1 secondo?

o del suo (1 punto)
(1 punto)
rmocentrale? tà trascurabile
(2 punti)

7. Dopo $4\cdot 10^6$ anni l'attività del tecnezio ottenuto diminuisce al punto da non inquinare più l'ambiente. Quanta dovrebbe dunque essere allora l'attività del tecnezio?

PAGINA VUOTA

PAGINA VUOTA

PAGINA VUOTA