

Cource	u e i	candidato	

Državni izpitni center

SESSIONE PRIMAVERILE

CHIMICA Prova d'esame 1

Lunedì, 2 giugno 2025 / 90 minuti

Materiali e sussidi consentiti:
Al candidato sono consentiti l'uso di penna stilografica o a sfera, matita HB o B, gomma, temperamatite e calcolatrice.

Al candidato viene consegnato un foglio per le risposte.

Nella prova è inserito un allegato staccabile contenente il sistema periodico.

MATURITÀ GENERALE

INDICAZIONI PER I CANDIDATI

Leggete con attenzione le seguenti indicazioni.

Non aprite la prova d'esame e non iniziate a svolgerla prima del via dell'insegnante preposto.

Incollate o scrivete il vostro numero di codice negli spazi appositi su questa pagina in alto a destra e sul foglio per le risposte.

La prova d'esame si compone di 35 quesiti a scelta multipla. È prevista l'assegnazione di 1 punto per ciascuna risposta esatta. Nei calcoli fate uso delle masse atomiche relative degli elementi indicate nel sistema periodico in allegato.

Scrivete le vostre risposte **all'interno della prova** cerchiando con la penna stilografica o la penna a sfera la soluzione da voi scelta; ricordate che tutti i quesiti hanno soltanto **una** soluzione esatta. Compilate anche il **foglio per le risposte**. Ai quesiti per i quali saranno state scelte più risposte o nei casi di correzioni non comprensibili verranno assegnati 0 punti.

Abbiate fiducia in voi stessi e nelle vostre capacità. Vi auguriamo buon lavoro.

La prova si compone di 16 pagine, di cui 4 vuote.

Scientia Est Potentia Scientia Est Potentia

	LSIS	FEMA D	FRICE		SISTEMA PERIONICO DEGLI EL EMENTI	FZU												₹	
				, 1			1											18	
								-		•				•				2	
	-	=						I					=	≥	>	>	₹	He	_
	_	7						1,008					13	4	15	16	17	4,003	
	က	4					1						5	9	7	80	6	10	
7	5	Be											m	ပ	z	0	ш	Ne	7
	6,941	9,012											10,81	12,01	14,01	16,00	19,00	20,18	
	11	12											13	14	15	16	17	18	
ო	N	B											¥	S	_	S	5	Ą	ო
	22,99	24,31	ო	4	2	9	7	œ	6	9	7	12	26,98	28,09	30,97	32,06	35,45	39,95	
	19	20	21	22	23	24	25	56	27	28	59	30	31	32	33	34	35	36	
4	¥	Ca	Sc	F	>	ວ້	s Z	Fe	ပိ	Ż	2	Zn	Ga	Ge	As	Se	Ŗ	¥	4
	39,10	40,08	44,96	47,87	50,94	52,00	54,94	55,85	58,93	58,69	63,55	65,38	69,72	72,63	74,92	78,96	79,90	83,80	
	37	38	39	40	41	42	43	44	45	46	47	48	49	20	51	52	53	54	
ß	Вb	S	>	Zr	Q Z	Š	ဥ	Ru	R	Pq	Ag	S	_	Sn	Sb	J e	_	Xe	2
	85,47	87,62	88,91	91,22	92,91	96,36	(86)	101,1	102,9	106,4	107,9	112,4	114,8	118,7	121,8	127,6	126,9	131,3	
	55	99	22	72	73	74	75	9/	7.7	78	6/	80	81	82	83	84	85	86	
9	S	Ва	La	Ĭ	La	>	Re	0 8	<u>-</u>	ĭ	Ρn	Hg	F	P	ā	Ъо	Ą	R	9
	132,9	137,3	138,9	178,5	180,9	183,8	186,2	190,2	192,2	195,1	197,0	200,6	204,4	207,2	209,0	(508)	(210)	(222)	
	87	88	89	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	
7	Ţ	Ra	Ac	Ŗ	Op	Sg	B	Ε	Ĭ	Ds	Rg	ن	ž	Ξ	<u>ک</u>	^	S L	Og	7
	(223)	(226)	(227)	(265)	(268)	(271)	(270)	(270)	(276)	(281)	(282)	(285)	(284)	(588)	(290)	(293)	(584)	(584)	

	28	29	09	61	62	63	64	65	99	29	89	69	20	71
Lantanidi	Ce	P	7	Pa	Sm	Eu	0 9	₽	Dy	£	Ē	Ħ	Υb	3
	140,1	140,9	144,2	(145)	150,4	152,0	157,3	158,9	162,5	164,9	167,3	168,9	173,0	175,0
	06	91	92	93	94	92	96	97	98	66	100	101	102	103
Attinidi	두	Ра	-	S Z	Pu	Am	C	BK	ຽ	Es	FB	Ρ	Š	בֿ
	232,0	231,0	238,0	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)
	 [

 $N_A = 6.02 \cdot 10^{23} \text{ mol}^{-1}$ $R = 8.31 \text{ kPa L mol}^{-1} \text{ K}^{-1}$ $F = 96500 \text{ A s mol}^{-1}$

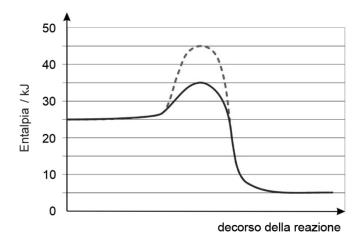
1. La capsaicina è un composto organico che conferisce al peperone e al peperoncino il sapore piccante. La seguente tabella illustra alcuni dati ottenuti da studi sulla tossicità della capsaicina.

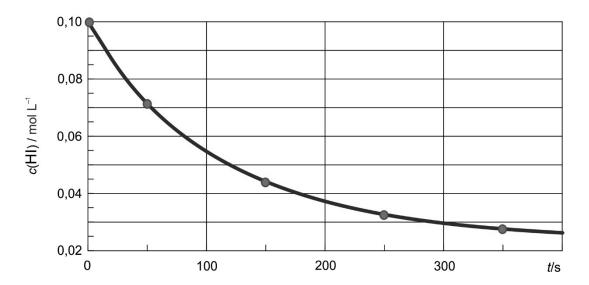
Animale	Maschio/Femmina	Via di somministrazione	LD ₅₀
topo	maschio	orale	119 mg kg ⁻¹
topo	femmina	orale	97,4 mg kg ⁻¹
ratto	maschio	orale	161 mg kg ⁻¹
ratto	femmina	orale	148 mg kg ⁻¹

Quale delle seguenti affermazioni è corretta?

- A La capsaicina è più tossica per i maschi che per le femmine, poiché il valore di LD₅₀ per i maschi di entrambe le specie animali è superiore.
- B Se a ciascuna delle femmine di topo, aventi un peso pari a 250 g, vengono somministrati 25 mg di capsaicina, almeno metà di esse morirà.
- C Se a ciascuno dei maschi di ratto, aventi un peso pari a 260 g, vengono somministrati 25 mg di capsaicina, almeno metà di essi morirà.
- D La capsaicina è più tossica per i ratti che per i topi.
- 2. Quale delle seguenti particelle ha la massa maggiore?
 - A 32S
 - B 34S
 - C 32S2-
 - D 33S2-
- 3. Diverse particelle presentano la seguente configurazione elettronica: $1s^2 2s^2 2p^6 3s^2 3p^6$. Quale delle particelle indicate di seguito *non* presenta tale configurazione elettronica?
 - A Ar
 - B S²⁻
 - C K⁺
 - D Mg²⁺
- 4. Quale delle seguenti affermazioni sui raggi atomici e ionici è corretta?
 - A Il raggio atomico aumenta lungo il periodo, da sinistra a destra, poiché anche il numero di elettroni aumenta allo stesso modo.
 - B Il raggio ionico è sempre maggiore del raggio atomico.
 - C Il raggio atomico aumenta lungo il gruppo, dall'alto verso il basso, poiché anche il numero di gusci che vengono occupati dagli elettroni aumenta allo stesso modo.
 - D I cationi sono sempre più grandi rispetto agli anioni.

- Quale delle seguenti molecole presenta l'angolo tra i legami più grande?
 - SO₂ Α
 - В SO₃
 - С CO_2
 - D CH₂Cl₂
- L'immagine sottostante rappresenta la formula di struttura dell'acido solforico. Le coppie di elettroni di non-legame non sono rappresentate. Quale affermazione è corretta?


- La molecola di acido solforico presenta 6 coppie di elettroni di non-legame.
- В Il numero di ossidazione dello zolfo nell'acido solforico è +6.
- С Tutti gli angoli tra i legami presenti nella molecola dell'acido solforico sono di 90°.
- D L'acido solforico può anche essere chiamato acido solforico(IV).
- Tra le molecole di quale coppia di composti si formeranno dei legami idrogeno?
 - Tra la molecola di etanolo e la molecola di etano.
 - В Tra la molecola di etano e la molecola d'acqua.
 - С Tra la molecola di etano e la molecola di metano.
 - D Tra la molecola di dietil etere e la molecola d'acqua.
- Nell'immagine sottostante sono rappresentate due molecole costituite solo da atomi di ossigeno. Questo fenomeno, che può essere riscontrato anche nel caso di altri elementi, viene chiamato:


- allotropia.
- В diffusione.
- С isomeria.
- D tautomeria.

- 9. Quale delle seguenti sostanze contiene il numero maggiore di atomi di ossigeno?
 - A 1,0 mol SO₃
 - B 40 g CO₂
 - C 60 g C₆H₁₂O₆
 - D 1,0 · 10²³ molecole di H₂O
- 10. Quale equazione della reazione chimica è bilanciata correttamente?
 - A $2BaCrO_4 + 2FeSO_4 + H_2SO_4 \rightarrow 2BaSO_4 + Cr_2(SO_4)_3 + Fe_2(SO_4)_3 + 8H_2O_4 + Cr_2(SO_4)_3 + Cr_2(S$
 - $B \qquad MnO_2 + 4HCI \rightarrow MnCl_2 + Cl_2 + 4H_2O$
 - C Bi₂S₃ + 2HNO₃ \rightarrow 2Bi(NO₃)₃ + 3S + H₂O + NO
 - D 5CH₃CH₂OH + 4KMnO₄ + 6H₂SO₄ → 4MnSO₄ + 5CH₃COOH + 2K₂SO₄ + 11H₂O
- 11. Il sottostante diagramma energetico rappresenta il cambiamento dell'energia di una reazione catalizzata e di una reazione non catalizzata. Qual è l'energia di attivazione nel caso della reazione non catalizzata?

- A 10 kJ
- B 20 kJ
- C 30 kJ
- D 40 kJ
- 12. Una soluzione di solfato di rame viene riscaldata, facendo evaporare dell'acqua. Quale affermazione è corretta?
 - A La concentrazione del solfato di rame diminuisce.
 - B La densità della soluzione diminuisce.
 - C La massa del soluto non cambia.
 - D La massa della soluzione non cambia.

13. Lo ioduro di idrogeno si decompone in idrogeno e iodio, come rappresentato dall'equazione: 2HI → H₂ + I₂. I risultati delle misurazioni delle concentrazioni dello ioduro di idrogeno sono riportati nel diagramma sottostante. Qual è la velocità media della decomposizione dello HI tra il 100° e il 300° secondo?

- A $0.75 \cdot 10^{-4} \text{ mol L}^{-1} \text{ s}^{-1}$
- B $1,00 \cdot 10^{-4} \text{ mol L}^{-1} \text{ s}^{-1}$
- C $1,25 \cdot 10^{-4} \text{ mol L}^{-1} \text{ s}^{-1}$
- D $1,50 \cdot 10^{-4} \text{ mol L}^{-1} \text{ s}^{-1}$
- 14. A una certa temperatura, in un recipiente di 5,00 L viene introdotta 1,00 mol di PCl₅. Una volta stabilito l'equilibrio chimico, nel recipiente sarà rimasto il 22,0 % di tale composto. Qual è la costante di equilibrio per la decomposizione del PCl₅ a tale temperatura?

Equazione della reazione: $PCI_5(g) \implies PCI_3(g) + CI_2(g)$

- A 0,280
- B 0,553
- C 1,28
- D 3,55
- 15. Quale delle seguenti affermazioni vale per l'equilibrio:

$$3H_2(g) + N_2(g) \implies 2NH_3(g)$$
 $\Delta H^{\circ}_r = -92 \text{ kJ}$

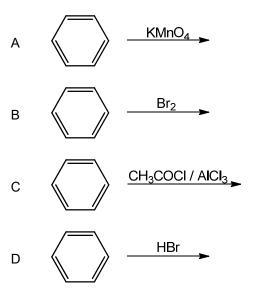
- A A una temperatura più alta, la costante di equilibrio sarà maggiore.
- B Aggiungendo un catalizzatore, l'equilibrio può venire spostato verso i prodotti.
- C Aumentando la concentrazione dell'azoto, l'equilibrio si sposterà a destra.
- D L'equazione scritta rappresenta un equilibrio eterogeneo.

- 16. Un becher contiene 100 mL di una soluzione 0,10 M di acido solforico. Quale delle seguenti affermazioni vale per tale soluzione?
 - A II pH della soluzione nel becher è 2.
 - B Introducendo nel becher alcune gocce di metilarancio, il suo contenuto si colorerà di giallo.
 - C La concentrazione di ioni idrossido contenuti nel becher è minore di 1,0 · 10⁻⁷ mol L⁻¹.
 - D A seguito dell'aggiunta di 100 mL d'acqua, il pH nel becher diminuisce.
- 17. In un becher contenente 50,0 mL di NaOH 0,100 M vengono aggiunti 30,0 mL di H₂SO₄ 0,100 M. Quale delle seguenti affermazioni, riguardo alla soluzione formatasi, è corretta?
 - A II pH della soluzione è maggiore di 7.
 - B La concentrazione degli ioni ossonio presenti in soluzione è 1,00 · 10⁻³ mol L⁻¹.
 - C Nella soluzione avviene una reazione ionica.
 - D Nella soluzione è presente una concentrazione di ioni sodio due volte maggiore della concentrazione di ioni solfato.
- 18. Quale delle seguenti reazioni ioniche avviene?
 - A $Mg(NO_3)_2(aq) + KCI(aq) \rightarrow$
 - B KCl(aq) + AgNO₃(aq) \rightarrow
 - C AgNO₃(aq) + NaNO₃(aq) \rightarrow
 - D KCl(aq) + NaBr(aq) →
- 19. Quale metallo deve essere posto in una soluzione di ioni di nichel affinché si depositi del nichel elementare?

Parte della serie redox: Li, K, Ca, Na, Mg, Al, Mn, Zn, Cr, Fe, Cd, Ni, Sn, Pb, Cu, Ag, Pt, Au

- A Piombo.
- B Rame.
- C Zinco.
- D Stagno.
- 20. Quale delle seguenti affermazioni sull'elettrolisi di una soluzione acquosa di cloruro di magnesio è corretta?
 - A Il rapporto tra le quantità degli elementi che si formano al catodo e all'anodo è di 1:2.
 - B Per formare al catodo 0,5 mol di elemento è necessaria una carica elettrica pari a 48500 As.
 - C Se l'elettrolisi avviene a una corrente di 12 A per 60 minuti, sull'anodo si depositano 8,17 g di elemento.
 - D Su entrambi gli elettrodi si vanno a formare degli elementi gassosi.

- A Una soluzione di dicromato di potassio è viola.
- B Una soluzione acquosa di ioni rame(2+) è colorata di blu.
- C Tutti i composti del ferro sono incolori.
- D Tutti gli elementi di transizione sono di colore grigio metallico.
- 22. Quale affermazione sui metalli alcalini è corretta?
 - A II litio presenta l'energia di ionizzazione più bassa.
 - B II potassio, il rubidio e il cesio vengono conservati in acqua.
 - C Il rubidio è meno reattivo del cesio.
 - D Durante la reazione tra il sodio e l'acqua si formano ossido di sodio e idrogeno.
- 23. Di seguito è rappresentata la formula di struttura di un alchene. Quale affermazione è corretta?

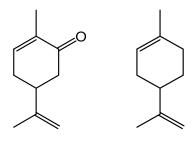

$$CH_3$$
 CH_3 CH_3 $CH_2-CH_2-CH_3$ CH_2-CH_3

- A Nella molecola, oltre a quelli primari, ci sono due atomi quaternari di carbonio.
- B Nella molecola sono presenti due atomi di carbonio ibridizzati sp.
- C II composto non può avere isomeri geometrici.
- D II 3-etilept-2-ene è l'isomero di struttura del composto rappresentato.
- 24. Scegliete l'affermazione corretta riguardante lo schema di reazione sottostante.

Propene
$$\xrightarrow{\mbox{HBr}}$$
 A $\xrightarrow{\mbox{Cl}_2/\Delta}$ B (miscuglio di più prodotti)

- A La reazione che porta alla formazione del prodotto A a partire dal propene è un'addizione nucleofila.
- B A seguito dell'addizione del bromuro di idrogeno al propene si forma il 1-bromopropano.
- C Scaldando la sostanza A in presenza del cloro si va a formare un miscuglio di tre prodotti monoalogenati.
- D La reazione che porta alla formazione della sostanza B a partire dalla sostanza A avverrebbe anche in presenza di luce.

- 25. Scegliete l'affermazione che descrive correttamente le proprietà degli idrocarburi.
 - A Gli alcani sono gli idrocarburi più reattivi.
 - B Gli alcani liquidi presentano una densità minore rispetto all'acqua.
 - C Negli alcheni e cicloalcheni liquidi, lo iodio si colora di marrone.
 - D Gli alchini bruciano con una fiamma azzurra.
- 26. Quale delle seguenti reazioni avviene?



- 27. Quale affermazione sul clorociclopentano è corretta?
 - A Riscaldando il composto in acqua, si forma il clorociclopentanolo.
 - B Riscaldando il composto con una soluzione acquosa di idrossido di potassio, si forma un miscuglio di pent-1-ene e pent-2-ene.
 - C Riscaldando il composto con idrossido di sodio concentrato in etanolo, si forma il ciclopentene.
 - D Il composto si forma a seguito della reazione tra il ciclopentano e il cloro secondo il meccanismo della sostituzione elettrofila.
- 28. Scegliete l'affermazione corretta riguardante l'acido butanoico e l'etil etanoato.
 - A L'etil etanoato è un derivato dell'acido butanoico.
 - B Nonostante abbiano la stessa massa molare, l'etil etanoato presenta il punto di ebollizione più alto.
 - C L'acido butanoico è più solubile in acqua dell'etil etanoato.
 - D I composti sono isomeri di posizione.

29. Qual è il prodotto principale della reazione indicata?

$$H_3C-CH_2-CH-CH_3$$
 $Cr_2O_7^{27}/H^+$

- A H₃C-CH₂-CH₂-CH₃
- H₃C-CH₂-C-CH₃
- $\begin{array}{ccc} & H_3C-CH_2-C-OF\\ C & \parallel\\ & O \end{array}$
- $\begin{array}{ccc} & \text{H}_3\text{C}-\text{CH}_2-\text{C}-\text{OCH}_3\\ \text{D} & & \text{O} \end{array}$
- 30. Si vuole eliminare il carvone da un campione di olio eterico contenente carvone e limonene. Con quale reagente è possibile separare il carvone sotto forma di precipitato giallo?

Carvone

Limonene

- A Bromo.
- B KMnO₄/H⁺
- C CH₃COCI/AICI₃
- D 2,4-dinitrofenilidrazina.
- 31. Quale composto in ambiente acido idrolizza fino a trasformarsi in acido acetico?
 - A Etanammina.
 - B Etanale.
 - C Etannitrile.
 - D Cloroetano.

- 32. La cellulosa, il glicogeno e l'amido sono polisaccaridi. Perché le loro proprietà sono diverse?
 - A La cellulosa, il glicogeno e l'amido contengono proporzioni diverse di glucosio, fruttosio e galattosio.
 - B Le unità monomeriche sono legate fra loro tramite legame eterico nella cellulosa, tramite legame glicosidico nel glicogeno e tramite legame amidico nell'amido.
 - C In questi composti, le unità di glucosio sono legate tramite legami glicosidici in modi diversi.
 - D Le unità monomeriche nella cellulosa si trovano in forma aciclica, mentre nel glicogeno e nell'amido si trovano in forma ciclica.
- 33. Quale affermazione sui lipidi è corretta?
 - A Gli steroidi presentano un tipico gruppo funzionale esterico.
 - B A seguito dell'idrolisi di uno steroide con NaOH, si ha la formazione del sapone sodico.
 - C Le cere sono esteri degli acidi grassi con alcoli superiori.
 - D I lipidi formano forti legami idrogeno, il che li rende ben solubili in acqua.
- 34. Quale composto è un'ammina secondaria?

$$\mathsf{A} \qquad \qquad \mathsf{NH}_2$$

- 35. In quale gruppo sono indicati solo polimeri di addizione?
 - A Teflon, cellulosa, nylon, poli(vinil cloruro).
 - B Poliammide, polietene, caucciù, polietere.
 - C Amido, nylon, cellulosa, poliestere.
 - D Polietene, teflon, polistirene, polipropilene.

