Annex 1

Ljubljana 2018

MATHEMATICS

Examination Guide for Persons with International Protection

1	INTRODUCTION	3
2	AIM OF THE EXAM	4
3	STRUCTURE AND ASSESSMENT	5
	3.1 Exam format	5
	3.2 Types of tasks and marking	5
	3.3 Criteria for conversion of percentage points into a descript mark	ive 5
4	CONTENT AND AIMS	6
	4.1 Fundamentals of logic	6
	4.2 Sets	6
	4.3 Number sets	6
	4.4 Algebraic theorems, equations and inequalities	8
	4.5 Powers and roots	9
	4.6 Geometry in the plane and in space	10
	4.7 Geometric shapes and solids	10
	4.8 Vectors in the plane and in space	11
	4.9 Cartesian coordinate system in the plane	11
	4.10 Functions	12
	4.11 Conic sections	16
	4.12 Sequences and series	16
	4.13 Differential calculus	17
	4.14 Integral calculus	18
	4.15 Combinatorics	18
	4.16 Probability theory	19
	4.17 Statistics	19
5	REFERENCE MATERIALS	21
6	APPENDIX	22
	6.1 Mathematical symbols	22
	6.2 Formulas from the Formula Sheet	26

1 INTRODUCTION

The Examination Guide for Persons with International Protection – MATHEMATICS (hereinafter referred to as the *Guide*) defines the Mathematics exam as required by the Decree on the methods and conditions for ensuring the rights of persons with international protection. The aim of the *Guide* is to help candidates prepare for the assessment of Mathematics required for enrolment in tertiary education.

Candidates taking the Mathematics exam have to prove that they are capable of achieving the exam objectives as defined by this *Guide*.

The *Guide* is based on the Mathematics syllabus^{*} and the *Subject Examination Guide for the General Matura Examination – Mathematics* for 2018. The contents and the objectives of the exam correspond to Mathematics at Basic Level in upper secondary education.

The Guide contains a description of:

- aims,
- the structure and marking of the exam, as well as items allowed and required tools,
- the content and objectives of the exam,
- reference materials, and
- mathematical symbols and terminology.

^{*} Učni načrt. Matematika [Elektronski vir]: gimnazija: splošna, klasična in strokovna gimnazija: obvezni predmet in matura (560 ur)/predmetna komisija Amalija Žakelj ... [et al.]. - Ljubljana: Ministrstvo za šolstvo in šport: Zavod RS za šolstvo, 2008. http://portal.mss.edus.si/msswww/programi2012/programi/gimnazija/ucni_nacrti.htm

2 AIM OF THE EXAM

In the Mathematics exam, candidates are expected to demonstrate that they can:

- read mathematical texts and correctly interpret them;
- clearly present mathematical contents in text, table, graph or diagram format;
- compute with numbers, evaluate and calculate the result with precision, as well as judge the result's validity;
- use the adequate method for calculating;
- apply information and communication technology (ICT) in solving mathematical problems;
- use the geometry set for drawing;
- interpret, reformulate and properly use mathematical statements, expressed either in words or in symbols;
- recognise and apply relationships between geometric objects in two and three dimensions;
- come to logical conclusions from given mathematical data;
- recognise patterns and structures in different situations;
- analyse a problem and choose the correct manner of solving it;
- notice and make use of the connections of different branches (areas) of mathematics;
- apply a combination of several mathematical skills and techniques in solving problems;
- present mathematical work in a logical and clear manner, using adequate symbols and terminology;
- apply mathematical knowledge in real-life situations;
- use mathematics as a means of communication with the emphasis on precise formulations.

3 STRUCTURE AND ASSESSMENT

3.1 Exam format

Question Paper	Time allowed	Weight	Items allowed and required tools	Appendix
1	120 minutes	100%	a fountain pen or a ballpoint pen, a pencil, an eraser, a calculator* and a geometry set ⁺	The Formula Sheet
Total	120 minutes	100%		

3.2 Test questions types and marking

3.2.1 Test question types

Question Paper	Type of task	No. of tasks	Marking
1	Short tasks	12	5 to 8 points for each correct answer
Total		12	80 points

3.2.2 Criteria for assessment

Tasks are assessed in accordance with the Mark Scheme. Points are awarded for individual steps in the procedure that can be from different levels of taxonomy. In solving the tasks, the path to the result with all interim calculations and conclusions must be clearly and correctly presented. In mathematical constructions, candidates are required to use the geometry set.

3.3 Criteria for conversion of percentage points into a descriptive mark

The exam is marked by the Subject Committee for Mathematics in absolute and in percentage points. The points are then converted by the Subject Committee for Mathematics into a descriptive mark: either 'Pass' or 'Fail'. Candidates pass the exam if they meet the criteria for 'Pass' in Mathematics in the General Matura Examination in the preceding calendar year.

A calculator is an electronic device used for performing basic arithmetic operations and should not support:

⁻ communication with the environment - the 'outside world',

⁻ storing data from the environment, or the 'outside world',

⁻ storing previously uploaded data,

computing with symbols,

<sup>programming new functions,
drawing graphs of functions.</sup>

⁺ A pair of compasses, two triangles and a ruler (optional).

4 CONTENT AND OBJECTIVES

4.1 Basic concepts of logic

Content	Objectives	
	Candidates	
Statements and relations between them	 write a statement, 	
Compound statements	 determine the truth-value of a statement, 	
Order of operations	 write a compound statement using symbols, 	
Tautology	 determine the truth-value of a compound 	
Equivalent statements	statement for all values of equivalent statements,	
	 determine equivalence of two statements. 	

4.2 Sets

Content		Ob	Objectives	
		Ca	ndidates	
Basic cond membersh set	cepts: element, set, set hip, subset, empty set, universal	-	are familiar with basic concepts and mark relations between elements and sets using symbols,	
Symbolic r	representations	-	use different methods for representations of	
Venn diag	ram		sets,	
Intersectio	Intersection, union, difference, complement of sets	-	compute with sets,	
compleme		-	find the power set of a finite set,	
Power set	S	-	draw the graph of a Cartesian product of two	
Cartesian	Cartesian product of sets		Sets,	
Cardinality	∕ of a set	-	use formulas for the power of a union of two or three sets as well as the power of the Cartesian product of finite sets.	

4.3 Number sets

Content	Objectives
4.3.1 Positive integers and integers	
	Candidates
Mathematical operations and their properties	 are familiar with the significance of positive integers and the reasons for the introduction of
Prime numbers and composite numbers	integers as well as examples of their use,
Decimal notation	 use mathematical operations in the set of positive integers and the set of integers, and
Criteria of divisibility by 2, 3, 4, 5, 6, 8, 9 and 10	can provide examples illustrating their properties,

Content	Obj	jectives
Divisibility relation	-	present positive integers and integers on a number line
The greatest common divisor and the least common multiple	_	use decimal notation of whole numbers,
Euclidean division theorem	_	justify and use the basic criteria of divisibility,
Decimal positional numeral system	-	are familiar with the properties of the divisibility relation and are able to apply them,
	-	determine the greatest common divisor and the least common multiple of two or more integers,
	-	use the Euclidean division theorem of integers;
4.3.2 Rational numbers		
Mathematical operations and their properties	-	are familiar with the reasons for the introduction of rational numbers and are able to justify them,
Decimal notation of rational numbers	_	present rational numbers on a number line,
	_	calculate with rational numbers,
reicentage calculus	_	use and explain a decimal notation of a rational number and distinguish between decimal and non-decimal fractions,
	_	calculate with decimal numbers,
	-	use proportions and percent as well as percentage calculus in tasks related to everyday life and are adept at using a calculator;
4.3.3 Real numbers		
Irrational numbers	_	are familiar with the reasons for the introduction
Real numbers on the number line		of real numbers and are able to justify them,
Intervals	-	provide some examples of irrational numbers,
Finite decimal approximations	-	construct square roots as examples of irrational numbers using the Pythagorean theorem,
Absolute value of a real number and its properties	-	interpret the number line as a real axis,

Absolute value equations

Absolute and relative error

- round decimal numbers,
- link geometric and analytical interpretations of the absolute value of real numbers,
- simplify expressions with absolute value and solve simple equations,
- compare the significance of absolute and relative errors and estimate absolute and relative errors of a sum, a difference, a product and a quotient of two data;

Content		Objectives	
4.3.4 Complex numbers			
Geometric representation of complex numbers in the plane	-	are familiar with the reasons for the introduction of complex numbers and are able to justify	
Mathematical operations and their		them,	
properties	-	present a complex number in the complex plane,	
Solving equations with real coefficients	-	use analytical and graphical methods to add and subtract complex numbers,	
	-	multiply complex numbers,	
	_	derive a rule for commuting powers of i,	
	_	find links between the analytical and geometric meaning of a complex conjugate,	
	-	find links between the analytical and the geometric significance of the absolute value of a complex number,	
	-	derive and apply the rule for division of complex numbers,	
	_	calculate the reciprocal of a complex number,	
	_	find complex solutions of equations.	

4.4	Algebraic expressions, equations and inequalities
	Aigebraic expressions, equations and mequalities

Content		Objectives	
	Ca	ndidates	
Mathematical operations with expressions Powers of expressions Factoring expressions	-	compare and distinguish between the notation for, and the significance of, an expression and an equation as well as a variable and an unknown,	
Calculating with fractions	_	add and multiply algebraic expressions,	
Equations and inequalities	-	apply and justify the rules on how to square and cube a binomial,	
Decomposable form equation	-	using Pascal's triangle, formulate the rules for higher powers of a binomial and use them,	
Linear inequality	_	recognise and use an adequate method of factoring a given expression: factoring out a common factor, the sum of squares, the sum and difference of cubes, Vieta's formulas, factoring quadrinomials,	
	-	calculate using algebraic fractions (all four mathematical operations and expressions with brackets),	
	-	apply rules for transforming equations to equivalent equations and effectively solve them,	
	-	recognise and solve linear equations,	

Content	Objectives	
	 recognise equations which can be solved by factoring and solve them, 	
	 effectively express unknowns from different physics equations or chemical equations, 	
	 apply rules for transforming inequalities to equivalent inequalities and effectively solve them, 	
	 recognise and solve linear inequalities. 	

4.5 Powers and roots

Content	Objectives		
	Candidates		
Powers with natural exponents Powers with integer exponents <i>n</i> th roots Powers with rational exponents	 justify and apply the rules for computing with power functions with natural exponents, 		
	 justify and apply the rules for computing with power functions with whole number exponents and compare them to the rules for computing with power functions with natural exponents 		
	- explain the significance of notations a^{-1} and a^{-n} ,		
	 apply the rules for computing with square roots, 		
	- solve quadratic equation of a form $x^2 = a, \ a > 0, \ a \in \mathbb{R}$ by factoring and determining square roots,		
	- compare and explain solving of simple equations of a form $x^n = a, a \in \mathbb{R}, n \in \mathbb{N}$ in a set of real numbers by determining square roots and factoring,		
	– explain and use the relation $\sqrt{x^2} = x $,		
	 compute exact cube roots of real numbers (by heart, i.e., without aid) and using a calculator, 		
	 distinguish between various conditions for determination of existence of an <i>n</i>th root of a real number (with respect to the degree of root and the radicand), 		
	 are adept at using a calculator for computing <i>n</i>th roots, 		
	 transform the notation of an <i>n</i>th root into the notation of a power with rational exponents, 		
	 make links and compare solving tasks with <i>n</i>th roots to solving with powers with rational exponents. 		

4.6 Geometry in the plane and in space

Content	Objectives
	Candidates
Points, lines and circles in the plane	- understand concepts of elementary Euclidean
Distance, a line segment, segment spanning a line, a bisector, a ray, an angle	geometry,develop perception of geometry and, through
Types of angle and relationships between angles	practice, learn the basic standards of the mathematical theory,
Triangle, polygons	 are familiar with the definitions and apply the properties of geometric shapes,
Famous points of a triangle	 apply relationships between interior and
Isometries and congruence	exterior angles of a triangle as well as
Translation, reflection, rotation, orientation of a triangle	triangle,
Orthogonal projection	 apply the relationship between inscribed and central angles subtending the same arc,
Inscribed and central angle	 distinguish between congruent and similar
Angle in a semicircle	triangles,
Homothety, similarity	 apply theorems in a right-angled triangle,
Theorems in a right-angled triangle	 construct shapes by using compass and ruler,
Parallelogram, rhombus, trapezium	 understand and apply relationship between sides and apples in an arbitrary triangle
Mathematical constructions	applying the sine and cosine rules,
The sine and cosine rules	 explore geometric problems using ICT,
Parallel and perpendicular lines and planes in three dimensional space	 develop perception of relationships between points, lines and planes in space.
Orthogonal projection of a line onto a plane	

4.7 Geometric shapes and solids

Content	Objectives
	Candidates
Areas of geometric shapes, Heron's formula	 develop and improve perception of geometry, express quantities from formulas
Radii of an inscribed and of a circumscribed circle in a triangle	 estimate and critically evaluate the calculated values and pay attention to the units of
Geometric solids: prism, cylinder, pyramid, cone and sphere	measurement,
Surface area and volume of an upright prism, cylinder, pyramid, cone and sphere	 apply acquired knowledge of plane geometry and solve problems related to the radius of an inscribed and of a circumscribed circle in a
Geometric mathematical problems	triangle,
	 describe a geometry solid,
	 apply acquired knowledge of trigonometric functions and geometry on models of geometry solids,

Content	Objectives
	 solve geometric problems related to the surface area and the volume of a solid and estimate and critically evaluate the calculated results and the units of measurement,
	 recognise a geometric problem, present it, determine which concepts, variables and relationships between them can be applied to solve it, solve the problem, present solutions and considers its implications,
	 independently choose and apply appropriate strategies to solve geometric problems and link contents from plane geometry and space geometry in solving geometric problems,
	 solve geometric problems using trigonometry.

4.8 Vectors in the plane and in space

Content	Objectives
	Candidates
Definition of vectors	 draw vectors, graphically add and factor
Addition and scalar multiplication (forces) – graphic interpretation	vectors as well as multiply vectors with scalars,
Collinearity, coplanarity – graphic interpretation	 learn how to operate with vectors graphically and algebraically,
Expressing vectors in a basis (factoring forces to components), Cartesian coordinate system – graphic interpretation	 evaluate collinearity and coplanarity of vectors,
Linear combination of vectors	 operate with vectors expressed in coordinates
Basis in the plane and in space	calculate the angle between two vectors, the
Cartesian coordinate system in the plane and in space; position vector of a point	magnitude of a vector and orthogonal projection of a vector,
Notation of a vector in coordinates	 discuss perpendicular and parallel vectors.
Mathematical operations with vectors expressed in coordinates	 understand perpendicularity in space.
Projection of a vector onto another vector	
Dot product, an angle between two vectors and the magnitude of a vector	
The relationship between the dot product and the cosine rule	

4.9 Cartesian coordinate system in the plane

Content	Objectives
	Candidates
Sets of points in the plane Distance between two points in a coordinate	 use a Cartesian coordinate system in the plane,
plane	

Content	Objectives
Area of a triangle	 read and draw a set of points in the coordinate plane in given conditions,
	 apply the relationship between ordered pairs of numbers and points in the plane,
	 calculate the distance between two points, calculate the area of a triangle and use the two formulas for solving mathematical problems.

4.10 Functions

Content	Objectives	
	Candidates	_
Definition of a function Definition of a real function and properties of real functions of real variables (injection, surjection, bijection, increasing and decreasing functions, even and odd	 understand and use the expression of a function, 	
	 understand and use the expressions: domain and range of a function, injective, surjective and bijective functions, 	n
Function composition	 draw and analyse the graph of a function by using translations, reflections, stretches or 	
Inverse function	shrinks,	
Transformations in the plane	 use translations, reflections, stretches or shrinks in solving problem-based tasks, 	
Limit of a function	 establish the existence of an inverse function 	n
Special examples of limits	on simple examples, offer its definition and	
Continuity of functions	given function,	
	 draw the graph of a piecewise-defined function, 	
	 explain the concept of the limit of a function a a given point with carefully chosen examples where functions are presented analytically or by their graphs or by the table of some of its values, 	at s r
	 calculate the limit of a function at a given point and explain the significance of the calculated limit value, 	
	 explain the significance of the limit of a function at infinity, 	
	 distinguish between the limit of a function at infinity and the infinite limit of a function, 	
	 use limits in calculating asymptotes of functions, 	
	 recognise continuity of a function presented by its graph, 	
	 find intervals where a given function is 	

continuous;

Objectives

4.10.1 Linear function

Definition and properties of a linear function, the graph of a linear function

Equations of a line in the plane

Angle between two lines

Linear equation

Linear inequality

System of linear equations

Modelling of simple examples from everyday life using a linear function

4.10.2 Power function

Definition and properties of a power function with natural exponents

Definition and properties of a power function with negative integer exponents

Modelling of examples from everyday life using a power function

4.10.3 Radical function

Definition, properties and the graph of a radical function

4.10.4 Quadratic function

Definition, properties and the graph of a quadratic function

Definition of a quadratic function and its equivalent forms

Vieta's formulas

Quadratic equation

- define linear functions and draw their graphs,
- are familiar with and apply the significance of coefficients in a linear function,
- interpret and use the graph of a linear function in real-life situations,
- calculate the angle between two lines,
- are familiar with the significance of different forms of an equation of a line,
- recognise linear relationships between variables and write a linear equation from a given text,
- solve linear equations,
- express a problem as a system of linear equations and solve it,
- solve simple problems from everyday life and adequately interpret them,
- model simple problems from everyday life using a linear function;
- recognise a power-dependence relation and distinguish it from other types of dependency relations (inverse proportionality...),
- draw and analyse the graph of a power function using transformations,
- formulate and model real-life phenomena using a power function and critically choose them;
- treat a radical function as the inverse function of a power function;
- find a quadratic function from different data and draw its graph,
- interpret and use the graph of quadratic function in real-life situations,
- solve quadratic equations and quadratic inequalities,

Content	Objectives
Intersection of a parabola and a line Intersection of two parabolas	 translate a problem into an equation or an inequality and solve it,
Quadratic inequality	 read mathematical texts, analyse and present them;
4.10.5 Exponential function	
Definition, properties and the graph of an exponential function	 recognise exponential dependence and distinguish it from other types of dependency relations
Exponential equations Exponential growth	 are familiar with and apply the properties of an exponential function.
Modelling real-life phenomena using an	 draw the graph of an exponential function,
exponential function	 use translations, reflections, stretches and shrinks of the graph of an exponential function,
	 compare power and exponential growth,
	 recognise and solve exponential equations,
	 find and model examples from everyday life using exponential functions;
4.10.6 Logarithmic function	
Definition, properties and the graph of a logarithmic function	 are familiar with and apply the properties of a logarithmic function,
Logarithm and the rules of logarithmic	 draw the graph of a logarithmic function,
Computation The common logarithm and the natural	 apply the relationship between exponential and logarithmic functions,
Logarithmic equations	 use translations, reflections, stretches and shrinks of the graph of a logarithmic function,
	 apply the rules of logarithmic computation,
	 recognise the number e and the natural logarithm,
	 recognise and solve logarithmic equations,
	 compare exponential and logarithmic growth;
4.10.7 Polynomial function	
Definition, properties and the graph of a polynomial function	 recognise linear and quadratic functions as special examples of polynomial functions,

- Mathematical operations with polynomials _ compute with polynomials,
 - apply the Euclidean division of polynomials theorem,
 - apply the polynomial remainder theorem,

Examination Guide for Persons with International Protection – Mathematics

corollaries

Euclidean division of polynomials theorem

The fundamental theorem of algebra and its

Zeros of a polynomial function

Content	Objectives	
Synthetic division of polynomials	 use synthetic division for finding zero polynomial function, 	s of a
function Polynomial equations	 apply the properties of polynomials in problem-based tasks, 	١
Polynomial inequalities	 draw and interpret the graph of a poly function, 	ynomial
	 solve polynomial equations and inequ 	Jalities;
4.10.8 Rational function		
Definition, properties and the graph of rational functions	 are familiar with and apply the proper rational functions, 	ties of
Zeros, poles and asymptotes	 draw and interpret the graph of a ratio function 	onal
Rational equations	 solve rational equations; 	
4.10.9 Trigonometric function		
Definitions and properties of trigonometric functions in a right-angled triangle	 define and apply trigonometric function right-angled triangle, 	ons in a
Definitions of trigonometric functions using a unit circle	 derive values of trigonometric function 0°, 30°, 45°, 60°, 90° angles, 	ns for
Properties and graphs of trigonometric functions	 derive and apply relationships between trigonometric functions of the same a 	en Ingle,
Transformations of graphs of trigonometric functions	 use a calculator, 	
Addition theorem	 use values of trigonometric functions random angles. 	for
Problem-based tasks	 are familiar with and apply the proper 	ties of
Finding values of circular functions	trigonometric functions,	
Trigonometric equations	 are familiar with and explain concepts different modes of representation (tak values, a graph, using a unit circle, analytically), 	s in ole of
	 apply transformations of graphs of trigonometric functions, 	
	 draw and interpret graphs of trigonom functions, 	netric
	 apply addition theorems, 	
	 apply trigonometric functions of doub angles, 	le
	 use trigonometric functions of double in trigonometric equations and proble based tasks, 	angles m-

- calculate values of circular functions,
- solve trigonometric equations,

Content	Objectives
	 interpret and analyse analytical solutions with regard to a given problem,
	 apply trigonometric functions in real-life situations where an angle has to be calculated,
	 solve simple, complex, authentic and original problems.

4.11 Conic sections

Content	Objectives
	Candidates
Algebraic notation of degree 2 curves	 find examples of cone sections in nature,
Circle with a centre at the origin or with the centre at an arbitrary point S(p,q)	 compare and use analytic and geometric definitions of a cone section,
Ellipse with a centre at the origin or with the centre at an arbitrary point S(p,q)	 interpret a circle as a special example of an ellipse,
Hyperbola with a centre at the origin	 analyse equations and graphically present
Parabola with a vertex at the origin	circles and ellipses centred at the origin and not centred at the origin,
	 analyse equations and graphically present hyperbolas and parabolas in vertex form,
	 analyse different forms of the equations of parabolas,
	 analytically and graphically determine intersections of a cone section and a line and determine intersections of cone sections centred at the origin,
	 explain the implications of results in analytical treatment of intersections.

4.12 Sequences and series

Content	Objectives
	Candidates
Definition of a sequence Properties of sequences (monotonous	 provide an example, induce, generalise and continue a sequence,
sequences, bounded sequences, convergent sequences)	 find and write down the relationship between terms of a sequence,
Arithmetic sequence	 continue the sequence which is given by a recursion,
The sum of first n terms of an arithmetic sequence and the sum of terms geometric sequence	 determine and analyse the properties of sequences in different modes of representation (numerical, graphic and analytical representations)
Limit of a sequence	analytical representations),

Content	Objectives
Series	 find examples of sequences given or represented in different manners,
Percentage calculus Annuity	 apply the properties of sequences in solving mathematical problems, predict and calculate the limit of a sequence,
Amonisation schedule	 distinguish between a series and a sequence,
	 distinguish between a convergent and a divergent series,
	– compute the sum of n terms of a sequence,
	 compute the sum of a geometric series,
	 distinguish between simple and compound interest,
	 distinguish between compound and relative interest rate,
	 apply the principle of equivalence of the principal,
	 find real-life examples of interest, predict expectations and make decisions based on simulative calculations,
	 calculate annuity and make amortisation plan.

4.13 Differential calculus

Content	Objectives	
	Candidates	
Differential quotient, derivative, geometric interpretation of a derivative	 describe concepts of differential calculus using graphic, numerical or analytical 	
Differentiation rules, derivatives of elementary functions	representations,	
	 calculate the value of a differential quotient, 	
Application of the derivative	 calculate the limit of a differential quotient, 	
Extreme values, increasing and decreasing differentiable functions on intervals	 explain geometric significance of a derivative, 	
Extremal problems	 derive elementary functions and composite functions, 	
	 determine points from the graph of a function where the function is not differentiable, 	
	 link the properties of a function and its derivative (predict properties, sketch a graph), 	
	 write down the equations of a tangent and a normal in a given point of a curve, 	

Content	Objectives
	 calculate the angle of intersection between two curves,
	 analyse a function with the derivative (explain extremes, determine intervals of increase and decrease) and draw a graph,
	 solve simple extremal problems.

4.14 Integral calculus

Content	Objectives
	Candidates
Indefinite integral and primitive function Properties of indefinite integral	 explain the relationship between the derivative of a function and the indefinite integral of a function,
Definite integral Properties of definite integral	 are familiar with the table of basic integrals and its link to the table of derivatives,
Relationship between definite and indefinite	 apply the properties of an indefinite integral,
Use of definite integral (areas)	 are familiar with geometric significance of a definite integral,
	 apply the properties of a definite integral in solving mathematical problems,
	 apply the relationship between a definite and an indefinite integral in solving mathematical problems,
	 solve simple mathematical and real problems using integrals.

4.15 Combinatorics

Content	Objectives
	Candidates
Fundamental theorem of combinatorics, tree diagrams	– calculate <i>n</i> !,
The rule of sum	 distinguish between individual combinatorial concepts,
Permutations	 calculate the value of a binomial symbol,
Permutations with repetition	 expand a binomial raised to a power.
Variations	
Variations with repetition	
Combinations	
Binomial theorem	
Pascal's triangle	

4.16 Probability

Content	Objectives
	Candidates
Fundamentals of probability: trial, event, the sample space	 formulate events and calculate with them,
Calculating the probability of events	
Subjective probability, empirical probability,	 distinguish between subjective, empirical and mathematical probability,
mathematical probability, probability of an event Calculating the probability of opposite events, sums of events	 understand and link empirical and mathematical probability
	 are familiar with and can apply the definition of mathematical probability
Normal distribution	
	 from given probabilities of individual events calculate the probability of other events,
	 use the sample space.
4.17 Statistics	

Content	Objectives
	Candidates
Basic statistical concepts Types of data	 distinguish between the studied properties (a variable), a unit, a value of a variable, a sample, a population,
Data collection Management and structuring of data Data representation (column chart, position chart, pie chart, histogram, scatter plot, line and curve charts, a box plot) Arithmetic mean, median, mode Variance, standard deviation, interquartile range Statistical task	 sample, a population, recognise the studied properties of a unit, distinguish between descriptive and qualitative data, cardinal and ordinal as well as numerical and quantitative data, collect, manage and structure data, select the appropriate diagram to represent data, read, make and interpret statistical diagrams, develop a critical attitude towards the interpretation of results, are familiar with and use different manners of summarising data, choose the appropriate manner of summarising data with regard to the type of data, calculate, evaluate and interpret the
	 average, the mode and the median as measures of central tendency of data, evaluate simple connections between variables in statistics,

Content	Objectives
	 calculate, evaluate and interpret the variance, the standard deviation and the interquartile range as measures of spread,
	 apply knowledge on how to use data in a complex procedure of empirical research (choose a topic, specify the research question, collect, manage, structure and analyse data, show and interpret results).

5 REFERENCE MATERIALS

Textbooks and learning tools approved by the Council of Experts of the Republic of Slovenia for General Education are listed in the *Catalogue of Textbooks for Secondary Education* and published on the National Education Institute Slovenia (*Zavod Republike Slovenije za šolstvo*) website www.zrss.si.

6.1 Mathematical symbols

► Logic

∧, &	conjunction
V	disjunction
\Rightarrow	implication
\Leftrightarrow	equivalence
$\neg A$, \overline{A}	negation of statement A
\forall	for each
Э	there exists
E	is an element of
¢	is not an element of
$\{x_1, x_2,\}$	the set of elements $x_1, x_2 \dots$
$\{x;\},\{x \mid\}$	the set of all x, so that
m(A), $ A $	the number of elements (i.e., power) of the set A
$\mathcal{P}A$, $\mathcal{P}(A)$	the power set of set A
Ø,{}	the empty set
U	a universal set (a universe)
A^{C} , A^{\prime}	the complement of set A)
$\mathbb{N} = \{1, 2, 3,\}$	the set of positive integers
\mathbb{N}_{0}	$\mathbb{N} \cup \{0\}$
Z	the set of integers
\mathbb{Z}^+	the set of positive integers
\mathbb{Z}^{-}	the set of negative integers
Q	the set of rational numbers
\mathbb{Q}^+	the set of positive rational numbers
\mathbb{Q}^{-}	the set of negative rational numbers
\mathbb{R}	the set of real numbers
\mathbb{R}^+	the set of positive real numbers
\mathbb{R}^+_0	the set of non-negative real numbers
\mathbb{R}^{-}	the set of negative real numbers
\mathbb{C}	the set of complex numbers

Sets

	\subset , \subseteq	is a subset of
	¢	is not a subset of
	U	a union
	\cap	an intersection
	×	a Cartesian product
	۱, –	a difference of sets
	[a,b]	the closed interval $\{x \in \mathbb{R}; a \leq x \leq b\}$
	[a,b)	the interval $\{x \in \mathbb{R}; a \le x < b\}$
	(a,b]	the interval $\{x \in \mathbb{R}; a < x \le b\}$
	(a,b)	the open interval $\{x \in \mathbb{R}; a < x < b\}$
 Relations and operation 	erations	
	(a,b)	the ordered pair
	=	is equal to
	≠	is not equal to
	\doteq , \approx	is approximately equal to
	<	is less than
	\leq	is less than or equal to
	>	is greater than
	\geq	is greater than or equal to
	+	plus
	_	minus
	·, ×	times
	:, ÷	divide
	$a \mid b$	a divides b
	D(a,b), $gcd(a,b)$	the greatest common divisor of integers a and b
	v(a,b), lcm (a,b)	the least common multiple of integers a and b
	\sum	the sum symbol
	a	the absolute value of the integer a
Complex numbers	3	
	i	the imaginary unit
	Rez	the real part of the complex number z
	lm z	the imaginary part of the complex number z
	z	the absolute value of the complex number z
	\overline{z} , z^*	the complex conjugate of the complex number z

► Geometry. Vectors

d(A,B) $ AB $	the distance between points A and B the length of the line segment AB
∢	an angle
Δ	a triangle shape
11	is parallel to
\perp	is perpendicular to
\cong	is congruent to
\sim	is similar to
\overrightarrow{AB} , \overrightarrow{a}	the vector \overrightarrow{AB} , the vector \overrightarrow{a}
$s\overline{a}$	the product of a vector \vec{a} by a number (a scalar) s
$\vec{a} \cdot \vec{b}$	the dot product of vectors \vec{a} and \vec{b}
$\vec{i}, \vec{j}, \vec{k}$	vectors of standard orthogonal basis
$\overrightarrow{a}=\left(a_{1}\text{, }a_{2}\text{, }a_{3}\right)$	the vector with coordinates a_1, a_2, a_3
$ \vec{a} $	the magnitude of vector \vec{a}
\vec{r}_A	the position vector of a point A
A(x,y)	the point A with coordinates x and y
A(x,y,z)	the point A with coordinates x , y and z
S, p	the area of a shape
V	the volume of a solid
Р	the surface area of a solid
f	a function f
$f:A\to B$	f is a transformation (function) which maps from A to B
$x \mapsto f(x)$	f transforms x into $f(x)$
D_f	the domain of function f
Z_f	the range of function f
f^{-1}	the inverse function of function f
$f\circ g$	the composition of functions f and g
$\lim_{x \to a} f(x)$	the limit value of function f as x approaches a
$\lim_{n\to\infty}a_n$	the limit of a sequence given by a general term a_n
$f', \frac{\mathrm{d}f}{\mathrm{d}x}$	the (first) derivative of a function f
$\int f(x) \mathrm{d}x$	the indefinite integral of a function f
-	

► Functions

$\int_{a}^{b} f(x) dx$	the definite integral of a function f with respect from
u	

a to *b* ► Combinatorics. Probability calculus. Statistics

obability calculu	
P_n	the number of permutations of n elements without repetition
$P_n^{m_1,m_2,\ldots,m_k}$	the number of permutations of n elements with repetition
n!	n factorial
V_n^r	the number of variations of n elements with repetition of the order r
$^{(p)}V_{n}^{r}$	the number of variations of n elements with repetition of the order r
$\binom{n}{r}$	the binomial coefficient $(n \text{ choose } r)$
C_n^r	the number of combinations between n elements without repetition of the order r
G, S	a certain event
N, I	an impossible event
<i>E</i> ₁ , <i>E</i> ₂ , <i>E</i> ₃ ,	elementary events
A^\prime , \overline{A}	the complementary event to event A
$A \cup B, A + B$	the sum of events A and B
$A \cap B$, $A \cdot B$	the product of events A and B
$A \setminus B, A - B$	the difference of events A and B
$A \subset B$	A is a subset of event B
P(A)	the probability of event A
$P(A \mid B)$	the probability of event A given B (conditional probability)
\overline{x} , μ	the arithmetic mean
σ^2	variance
σ	standard deviation

6.2 Formulas from the Formula Sheet

Euclid's theorem and the right triangle altitude theorem: $a^2 = ca_1$, $b^2 = cb_1$, $v_c^2 = a_1b_1$ The radii of a circumscribed and an inscribed circle in a triangle: $B = \frac{abc}{c}$, $v = \frac{S}{c}$, $a = \frac{a+b+c}{c}$

The radii of a circumscribed and an inscribed circle in a triangle: $R = \frac{abc}{4S}$, $r = \frac{S}{s}$, $s = \frac{a+b+c}{2}$

Addition theorem:

 $\sin(x+y) = \sin x \cos y + \cos x \sin y$ $\cos(x+y) = \cos x \cos y - \sin x \sin y$ $\tan(x+y) = \frac{\tan x + \tan y}{1 - \tan x \tan y}$

Distance of the point $T_0(x_0, y_0)$ from the line ax + by - c = 0: $d(T_0, p) = \left| \frac{ax_0 + by_0 - c}{\sqrt{a^2 + b^2}} \right|$ The area of a triangle with vertices $A(x_1, y_1)$, $B(x_2, y_2)$, $C(x_3, y_3)$: $S = \frac{1}{2} | (x_2 - x_1)(y_3 - y_1) - (x_3 - x_1)(y_2 - y_1) |$ Ellipse: $e^2 = a^2 - b^2$, $\varepsilon = \frac{e}{a}$, if a > bHyperbola: $e^2 = a^2 + b^2$ Parabola: $y^2 = 2px$, focus $G\left(\frac{p}{2}, 0\right)$ Composite function: $(g \circ f)(x) = g(f(x))$ Integral: $\int \frac{dx}{x^2 + a^2} = \frac{1}{a} \arctan \frac{x}{a} + C$